Comment on "On the Role of Locality Condition in Bell's Theorem"

Tomasz Paterek

Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, PL-80-952 Gdańsk, Poland, email: pater@univ.gda.pl

In his paper [H. Razmi, Int. J. Quant. Inf. 1, 25 (2003)] Razmi derives a Bell-like inequality without imposing the locality condition. Then he shows violation of this inequality by certain quantum predictions. Here we point at a loophole in Razmi's proof, which invalidates his inequality.

Razmi studies a Bell type experiment. The source produces two spin $\frac{1}{2}$ particles in the singlet state $|\psi\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$. Each particle travels to space separated labs, where they are measured with one of two dichotomic (with outcomes ± 1) observables. The experiment is run n times. Razmi claims that, after excluding measurement of the same observable in both labs, the number of measurement outcomes, the product of which is equal to +1, m, is in the range

$$0 < m \le n. \tag{1}$$

"This is because the special case m = 0 only corresponds to setting $\theta_A = \theta_B$ ". This claim is wrong. The singlet state is rotationally invariant, i.e. the two spins are antiparallel along whichever (the same in both labs) direction we choose to measure. In such a case the product of measurement outcomes is never equal to +1. Thus probability P(+1) = 0, what implies m = 0. If two different observables are measured then P(+1) > 0, but nevertheless the situation in which the product of measurement results is never equal to +1 cannot be excluded (i.e. m can be 0).

To illustrate this consider coin tosses. The probability of heads $P(\text{heads}) = \frac{1}{2} > 0$, but this does not guarantee that a finite sequence of trials in which not a single head appears is ruled out.

After the correction of (1) inequality (11) of Razmi is bounded by 0 and no conflict appears with the quantum inequality (16).

I. ACKNOWLEDGMENTS

The author is grateful to Professor Marek Žukowski for showing the Bell's theorem. This work is supported by the KBN grant PBZ-MIN-008/P03/03 and Stypendium FNP.

[1] H. Razmi, Int. J. Quant. Inf. 1, 25 (2003).