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PL-80-952 Gdańsk, Poland, email: pater@univ.gda.pl

Marek Żukowski
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We introduce new communication complexity problems whose quantum solution exploits entan-
glement between higher-dimensional systems. We show that the quantum solution is more efficient
than the broad class of classical ones. The difference between the efficiencies for the quantum and
classical protocols grows with the dimensionality of the entangled systems.

I. INTRODUCTION

To date only very few tasks in quantum communication and quantum computation exploit higher-dimensional
systems. One such example is quantum-key distribution based on higher alphabets which was shown to be more
secure than the one based on qubits.[1] It is therefore highly desirable to find new tasks which either require higher-
dimensional entanglement to breach the classical limits, or for which the separation between efficiency of quantum
and classical solution increases with the dimensionality of the entangled systems.

Communication complexity studies the amount of communication that the participants of a communicating system
need to exchange in order to perform a task [2]. Typically there are two separated parties, conventionally called
Alice and Bob, who receive some data of which they only know their own data and not the data of the partner.
For example, Alice receives an input x and Bob receives y. Their common goal is to determine the value of some
given function f(x, y) exchanging as little communication as possible. This situation is known as a ”communication
complexity problem” (see Ref. [3] for a survey of applications).

We consider a specific type of communication complexity problems (CCPs) in which one asks what is the highest
possible probability for the parties to arrive at the correct value of the function, under the condition of restricted com-
munication. The parties try to compute the function correctly with maximal probability. An execution is considered
successful, if the value given by all parties is correct. Classically, the parties are allowed to share random strings or
any other local data which might improve the success rate of the protocol. In 1997 Cleve and Burhman showed that
there are CCPs for which the parties can increase the success rate, if they share prior entangled quantum systems,
rather than classically correlated random strings [4].

There is a strong link between violation of local realism (i.e. violation of Bell’s inequalities) and CCPs [5]. In Ref. [6]
a two-party problem was found whose quantum solution was based on the violation of the Clauser-Horne-Shimony-Holt
inequality [7]. Similarly the quantum solutions of specific multi-party problems were based on a Greenberger-Horne-
Zeilinger argument against local realism [6, 8–10]. Finally, it was shown that one can link a CCP with every Bell
inequality for qubits [11]. However, if the inequalities involve higher dimensional objects, new possibilities emerge.

Here we give quantum communication complexity protocols based on higher-dimensional entangled systems. For
a wide class of classical protocols we find an increase in the separation between the efficiency of the quantum and
classical strategies, which grows with the dimensionality of the entangled systems. We show that the quantum protocol
is more efficient than the classical ones if and only if the protocol participants can share a state that violates the
CGLMP inequalities for higher-dimensional systems [12]. The results form a generalization of those of Ref. [13] to
arbitrarily high-dimensional systems. Despite the fact that the CCPs considered here may seem to be artificial, we
think that it points a new link between Bell’s theorem and CCPs.

II. QUANTUM COMMUNICATION COMPLEXITY PROBLEMS WITH QUDITS

Let us now define the two-party communication complexity problem which will be our case of study. This problem
is a generalization of the one presented in Ref. [13]. A certain number of questions, about values of some d-valued
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functions, is posed to the parties. The parties are restricted both in communication as well as in broadcasting their
answers. Specifically, the parties must give single answer to 2[d/2] questions ([x] stands for the integer part of the
number x), basing on the local inputs which they obtained, known only locally, and the value of a dit (a generalization
of a bit, to a unit of information which can have d values) broadcast by the partner. The integer d describes the
number of possible answers to each question. Further, the parties are not allowed to differ in their answers. That is,
they must produce two identical answers each time.

Formally the 2[d/2] questions will be formulated as a problem of computation of [d/2] functions f+k (k = 1, ..., [d/2])

and [d/2] functions f−k (k = 1, ..., [d/2]). The parties are allowed to give only one answer to the question about the

values of all 2[d/2] functions and their goal is to give the correct value of [d/2] functions f+k , with the highest possible

probability, and at the same time, the correct value of [d/2] functions f−k with the lowest possible probability. Before
putting the value to all these functions, the parties can broadcast only one dit of information. The questions are not
treated equally. The importance of questions changes with the weight 1− 2k

d−1 .
We now introduce the two-party task in detail and give all the functions explicitly: Alice receives a data string

α = (abit, adit) and Bob a string β = (bbit, bdit). Alice’s string is a combination of a bit abit ∈ {0, 1} and a dit
adit ∈ {1, γ, γ2, . . . , γd−1} where γ = ei(2π/d). We use this specific notation for the values of dits in order to simplify
the formulas for the functions. Similarly Bob’s string is a combination of a bit bbit ∈ {0, 1} and a dit bdit ∈
{1, γ, γ2, . . . , γd−1}. All possible input strings are distributed randomly and with equal probability. Before they
broadcast their answers, Alice and Bob are allowed to exchange two dits of information. Alice and Bob each broadcast
her/his answer in the form of one dit. The two answers must be identical. That is, each party broadcast the same one
dit. The task of Alice and Bob is to maximize (having in mind the weight of the questions) all differences between
the probabilities P (f+k ), of giving the correct value for the functions

f+k = aditbditγ
abitbbit+k(−1)abit+bbit

, k = 0, . . . , [d/2]− 1, (1)

and P (f−k ), of giving the correct value for the functions

f−k = aditbditγ
abitbbit+(k+1)(−1)abit+bbit+1

, k = 0, . . . , [d/2]− 1. (2)

That is, they aim at the maximal value of

∆ =

[d/2]−1∑
k=0

(
1− 2k

d− 1

)(
P (f+k )− P (f−k )

)
. (3)

We will show that, if two parties use a class of classical protocols (optimality of which will be shown elsewhere), the
difference ∆ introduced above is at most 0.5, whereas if they use two entangled qudits this difference can be larger.
Furthermore the difference increases with d.

III. QUANTUM VERSUS CLASSICAL PROTOCOL

Note that the first factor aditbdit in the full functions f±k results in completely random values if only one of the
independent inputs adit or bdit is random. This is not the case for the last factors with inputs abit and bbit. Thus,
intuition suggests that good classical protocol for the two parties may be that Alice “spends” her dit by sending adit
and Bob by sending bdit and that they put for the part of f ’s dependent on the bits the value most often appearing in
the third column and, at the same time, least often appearing in the fourth column of the Table 1. Moreover, because
of the weight function they should give preference to the values connected with functions for k = 0. The second factor
of f+0 is equal to 1 in three out of four cases, whereas f−0 is 1 in one of four cases. Thus if each of them broadcasts
the value aditbdit as her/his answer, ∆ = 1(0.75− 0.25) = 0.5.

Let us now present the optimal class of classical protocols which can be followed by Alice and Bob, and which
contains the above intuitive example as a special case: Alice calculates locally any function a(abit, λA) and Bob
calculates locally any function b(bbit, λB). Here λA and λB are any other parameters on which their functions a and
b may depend. They may include random strings of numbers shared by Alice and Bob before the protocol started.
Alice sends to Bob eA = adita and receives from him eB = bditb. Upon receipt of eA and eB , they both broadcast
eAeB as their answers (which always agree). Note, that our intuitive protocol is reproduced by a = 1 and b = 1 for
all inputs.

Before showing what is the maximal ∆ achievable for such a wide class of classical protocols, we shall introduce its
quantum competitor. Let Alice and Bob share a pair of entangled qudits and suitable measuring device (see, e.g. Ref.
[14]). This is their quantum protocol: If Alice receives abit = 0, she will measure her qudit with the apparatus which
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TABLE I: A set of possible input values for abit and bbit and the corresponding values of the exponents of f±
k .

abit bbit abitbbit + k(−1)abit+bbit abitbbit + (k + 1)(−1)abit+bbit+1

0 0 k −(k + 1)

0 1 −k k + 1

1 0 −k k + 1

1 1 k + 1 −k

is set to measure a d-valued observable A0. Otherwise, i.e., for abit = 1, she sets her device to measure a different
d-valued observable A1. Bob follows the same protocol. If he receives bbit = 1, he measures the d-valued observable
B1 on his qudit. For bbit = 0 he measures a different d-valued observable B0. We ascribe to the outcomes of the
measurements the d values 1, γ, γ2, . . . , γd−1. The actual value obtained by Alice in the given measurement will be
denoted again by a, whereas the one of Bob’s, also again, by b. Alice sends dit eA = adita to Bob, and Bob sends dit
eB = bditb to Alice. They both broadcast eAeB as their answers.

The task in both protocols is to maximize ∆ defined by (3). The probability P (f+k ) is the probability for the
product ab (of the local measurement results in the quantum case, and the local functions in the classical case) to be
equal to the part of the functions f+k which depends only on a abit and bbit:

P (f+k ) =
1

4

[
P01(ab = γ−k) + P11(ab = γk+1)

+P10(ab = γ−k) + P00(ab = γk)
]
, (4)

where e.g. P01(ab = γ−k) is the probability that ab = γ−k if she receives abit = 0, and he bbit = 1. In the quantum case
the probabilities on right hand side of Eq. (4) are probabilities for certain products of measurement results, whereas
in the classical case they are probabilities for the products of locally computed functions, where the λA’s and λB ’s
are distributed according to probability distribution ρ(λA, λB) (note that this distribution cannot depend upon the
strings received by Alice and Bob after the initialization of the protocol). Recall that all four possible combinations
for abit and bbit occur with the same probability 1

4 . Similarly, the probability P (f−k ) is given by

P (f−k ) =
1

4

[
P01(ab = γk+1) + P11(ab = γ−k)

+P10(ab = γk+1) + P00(ab = γ−(k+1))
]
. (5)

Finally, one notices that the success measure in the task is given by

∆ =
1

4
Id, (6)

where Id is just left hand side of CGLMP inequality [12]. The equivalence of Id and Collins et al. inequalities may not
be obvious at the first glance because in Ref. [12] authors ascribe to local measurement results integers 0, 1, . . . , d− 1
and use modulo d calculus; however, the difference between that description and the one used here is just in the
notation. Collins et al. showed that Id ≤ 2 for all local realistic theories.

If one looks back at the family of classical protocols introduced above, one sees that they are equivalent to a local
realistic model of the quantum protocol (λ’s are local hidden variables, and abit, bbit are local variables which define
the measurements). This implies that within the full class of classical protocols considered here ∆ ≤ 0.5.

Thus, the necessary and sufficient condition for the state of two qudits to improve the success in the communication
complexity task over any classical protocol of the discussed class is that the state violates the Bell inequality for two
qudits.

It was shown in Ref. [15] that nonmaximally (asymmetric) entangled states of two qudits can violate the CGLMP
inequalities stronger than the maximally entangled one. Maximal violations for some d and corresponding probabilities
for success in the CCP are gathered in the Table 2.

Therefore, in a classical protocol, even with shared random variables, more than two dits of information exchange
are necessary to complete the task successfully with ∆ > 0.5, whereas with quantum entanglement two dits can be
sufficient for the task with the same ∆. Note that the discrepancy between the measure of success in the classical and
the quantum protocol grows with d.
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TABLE II: Maximal violation of CGLMP inequalities and corresponding measures for success in the CCP. The ∆Q denotes the
quantum success measure and ∆C the classical one. The values of maximal violations are taken from the work of Acin et al..

d Maximal violation ∆Q ∆Q − ∆C

3 2.9149 0.7287 0.2287

4 2.9727 0.7432 0.2432

5 3.0157 0.7539 0.2539

6 3.0497 0.7624 0.2624

7 3.0776 0.7694 0.2694

8 3.1013 0.7753 0.2753

We would like to stress that asking all 2[d/2] questions is not necessary to prove the advantage of the quantum
protocol. As showed in Ref. [13] even one question f+0 is sufficient for an advantage of quantum strategy over the
classical ones, but asking all questions maximizes the advantage.

IV. CONCLUDING REMARKS

One can generalize the scheme to more than two parties. Our results suggest that Bell’s inequalities might have
a significance beyond that of a non-optimal witness of non-separability. In view of the fact that to date only very
few quantum information procedures use higher-dimensional systems as resources, the development of quantum com-
munication complexity protocols exploiting the entanglement between such systems might open a new avenue of
research.
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2003). Č.B. is supported by the Austrian FWF project F1506, and by the European Commission, Contract-No.

IST-2001-38864 RAMBOQ. T.P. is supported by the UG grant BW/5400-5-0256-3 and FNP. M.Ż. acknowledges
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