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Abstract. Can quantum theory be seen as a special case of a more general

probabilistic theory, similarly as classical theory is a special case of the quantum one?

We study here the class of generalized probabilistic theories defined by the order of

interference they exhibit as proposed by Sorkin. A simple operational argument shows

that the theories require higher-order tensors as a representation of physical states.

For the third-order interference we derive an explicit theory of “density cubes” and

show that quantum theory, i.e. theory of density matrices, is naturally embedded in

it. We derive the genuine non-quantum class of states and non-trivial dynamics for

the case of three-level system and show how one can construct the states of higher

dimensions. Additionally to genuine third-order interference, the density cubes are

shown to violate the Leggett-Garg inequality beyond the quantum Tsirelson bound for

temporal correlations.
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1. Introduction

In the past researchers were often deeply convinced of the absolute validity of the

ruling set of theories, and yet the set was later inevitably replaced by a more

fundamental one of which the old one has remained a special case. In this respect

it seems of supreme importance to keep performing dedicated tests of foundations of

quantum physics with the goal of possibly finding a cue for deviations from what we

presently expect. A vast majority of the tests performed to date contrast quantum

mechanical predictions with the predictions of those theories that preserve one or other

notion of classical physics intact. Examples are hidden-variable theories [1, 2, 3],

non-linear modifications of the Schrödinger equation [4, 5, 6, 7] or the collapse

models [8, 9, 10, 11, 12]. Hidden variables pre-assign definite values to outcomes

of unperformed measurements, non-linear Schrödinger equations allow solutions with

localized wave-packets to resemble classical trajectories and collapse models restore

macrorealism by suppressing superpositions between macroscopically distinct states.

Judging from historical experience, however, it seems very unlikely that a post-quantum

theory will be based on pre-quantum concepts. In contrast, one might expect that it

will break not only postulates of classical but also quantum theory [13].

Quantum mechanics can be seen as particular theory of the class of generalized

probabilistic theories [14, 15, 16, 18, 19, 20, 21]. These theories share with quantum

mechanics its non-classical features such as randomness of individual results, the

impossibility of copying unknown states [22, 23], violation of Bell’s inequalities [2],

uncertainty relations [19, 20] or interference [21]. Recent progress in reconstructions of

quantum formalism give a variety of choices for postulates on which quantum theory can

be singled out from the class of generalized probabilistic theories [17, 18, 24, 25, 26, 27].

Quantum interference is standardly explained through the double-slit experiment,

where one combines superposition principle and Born rule to derive the “interference

term” – a quantity that vanishes in all classical experiments. If one considers multi-slit

interference experiments there is a very natural hierarchy of probabilistic theories due to

Sorkin [21]. The hierarchy is described by the order of interference Ik (k = 1, 2, 3, . . .)

defined by the outcome probabilities in k-slit experiment. One may consider Ik
as a measure of genuine coherence between k slits. Sorkin showed that quantum

mechanics exhibits only two-slit interference, but no genuine three-slit or higher-order

interferences. This demonstrates that a theory that exhibits, for example, genuine three-

slit interference I3 is essentially a non-quantum theory though no explicit such theory is

known. Recently, an experiment has been performed that puts a bound to third-order

interference term to less than 10−2 of the regular second order interference [28] and

further experiments are planned to improve the bound [29].

In this work we give operational arguments why the theory that exhibits the kth-

order interference describes physical states by tensors with k indices. For example,

classical probability theory as a first-order theory represents states by a (probability)

vector (one-index tensor) and quantum theory by a density matrix. Similarly, for a
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third-order theory one needs an object with three indices and we call it a density cube.

We develop a theory of density cubes and show that it contains quantum theory as a

subset, the same way quantum theory contains classical theory as a subset. We derive a

class of non-quantum states and show that there exists non-trivial dynamics that maps

between quantum and non-quantum states. All this allows creation, manipulation and

tomography of density cubes as well as violation of the Leggett-Garg inequality [30]

beyond the quantum Tsirelson bound for temporal correlations [31, 32]. It was recently

shown that the absence of third-order interference implies the validity of Tsirelson’s

bound for spatial correlations for a broad class of probabilistic theories [33].

2. Higher-order interference theories

In Ref. [21] Sorkin suggested a classification of theories according to the order of

interference the theory exhibits. Roughly speaking, the order indicates how much the

calculus of the predicted probabilities in the theory deviates from the one in classical

physics. To demonstrate the interference phenomenon we first consider the double-slit

experiment, as shown in Fig. 1, and a series of set-ups in which each slit is either open

or closed. We distinguish four situations: both slits are open, either one of them is

closed and both are closed. The four physical situations are labeled as 00, 01, 10, 11,

where, e.g. 01 denotes the scenario with the lower slit blocked. The “non-classicality”

is measured via the interference term:

I12 = p00 − p01 − p10 + p11, (1)

where pij is the conditional probability to find the particle at a certain point on the

observation screen given that situation ij is realized. Of course, p11 always vanishes

bringing no contribution to the value of I12 and we introduce it only for symmetry

reasons and future generalization.

Classical theory of bullets belongs to the lowest class in this hierarchy because

I12 = 0. Quantum theory is an example of a theory for which I12 does not vanish, and

we call this feature the second-order interference.

Consider now a triple-slit experiment. One could propose to measure the third-order

interference by the quantity I123 = p000−p011−p101−p110, where p011 is the conditional

probability to detect the particle at a certain point on the observation screen, if the

upper slit is open and the middle and the lower slits are blocked (see lower panel of

Fig. 1). Note, however, that I123 6= 0 can solely be due to the non-vanishing second-

order interference terms. In order to quantify genuine third-order interference one thus

needs to subtract all the two-order interference terms

I12 = p001 − p011 − p101,

I13 = p010 − p011 − p110, (2)

I23 = p100 − p101 − p110,
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Figure 1. (Up) The set of four experimental set-ups with two, one and no slits

opened for probing if the theory has a nonvanishing second-order interference (such

as complex, quaternion or octonion quantum mechanics do). (Down) The complete

series of “single-slit” and “double-slit” experimental set-ups to probe if the theory in

test shows third-order interference.

from I123. Therefore, as a measure of genuine third-order interference one introduces

I123 =
1
∑

i,j,k=0

(−1)i+j+kpijk, (3)

where again the last term p111 always vanishes. Straightforward calculation shows that

I123 = 0 in quantum theory, regardless of the Hilbert space dimension of the system

and the type of measurement. In fact all theories that are represented by Jordan

algebras [34] have vanishing the third-order interference as well. Examples contain

quantum mechanics based on complex, quaternion or octonion probability amplitudes.

The theories for which the third-order interference term is zero have been characterized

as those in which it is possible to fully determine the state, i.e. to perform state

tomography, via a complete set of single-slit and double-slit experiments [35].

Generally speaking, the Sorkin’s quantity I12...k measuring the genuine kth-order

interference is a sum of interference terms for all combinations of open slits where the

terms involving k − j slits, for odd j, enter with a minus sign and for even j, with a

plus sign. If I12...k = 0, then all I12...l, with l > k, also vanish [21]. The level of a theory

is the highest k for which the Sorkin’s quantity I12...k does not vanish.

3. Theory of density cubes

We will now develop an explicit theory that belongs to the Sorkin’s class of theories

with non-vanishing third-order interference. The theory contains quantum theory as a

subset.



Density cubes and higher-order interference theories 5

The fact that I123 = 0 in quantum mechanics can be traced back to the description

of state in terms of density matrix elements ρij that link coherently at most two different

states i and j. It is therefore natural to assume that if a theory should allow for I123 6= 0,

then the description of the state in the theory should involve elements that link three

different states i, j, k, i.e. it should have elements of the form ρijk. We consider a

framework in which the description of the state is given by the tensor with elements

ρijk, and we call it a density cube.

We follow the analogy to the quantum case in order to define the basic ingredients of

the theory. To every measurement outcome we associate a density cube with, in general,

complex entries ρijk. The element ρiii is chosen to be real and gives the probability for

the outcome i, therefore
∑

i ρiii = 1 and ρiii ≥ 0. The Born rule in quantum mechanics

reads p = Tr ρ†σ = ρ∗ijσij , where we adopt Einstein’s summation rule. In a similar

manner we define

p = (ρ, σ) = ρ∗ijkσijk. (4)

Here p denotes the probability, whereas ρ and σ, are the state and element of a projective

measurement, respectively. Note, that we follow the analogy to quantum theory where

there exists a compete identification between states and measurements. Therefore, ρ

and σ belong essentially to the same set. To ensure that p is a real number, we put the

constraint ρ∗ijkσijk = σ∗
ijkρijk. In the quantum case p ∈ R is provided by the fact that

ρij is a Hermitian matrix, hence ρ∗ij = ρji. Similarly, we expect ρ∗ijk = ρπ(ijk), where

π(ijk) is some permutation of indices ijk. The condition (ρ∗ijk)
∗ = ρijk implies that

π is the index transposition. Accordingly, we call the cubes Hermitian if exchanging

two indices gives a complex conjugated element. As in the case of Hermitian matrices,

Hermitian cubes form a real vector space with the inner product given by (4). Indeed,

(ρ, σ)∗ = σ∗
ijkρijk = σjikρijk = ρjikσijk = ρ∗ijkσijk = (ρ, σ). For ρijk being a pure state we

expect (ρ, ρ) = 1.

3.1. Two-level system

For a system with two distinguishable outcomes, the hermiticity constraint together

with the normalization condition reads:

ρ∗112 = ρ112 = ρ121 = ρ211 ∈ R,

ρ∗122 = ρ122 = ρ212 = ρ221 ∈ R,

ρ111 + ρ222 = 1,

ρiii ≥ 0, i = 1, 2. (5)

There are three independent real parameters here, e.g. ρ111, ρ112, and ρ122, and we can

write a density cube as a list of two matrices

ρ = {
(

ρ111 ρ112
ρ112 ρ122

)

,

(

ρ112 ρ122
ρ122 1− ρ111

)

}, (6)
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where the ith list element is the matrix ρijk. We set ρ112 = x1√
6
, ρ122 = x2√

6
, and

ρ111 = (1 + x3)/2. In this parametrization the normalization condition for pure states

(ρ, ρ) = 1 is equivalent to x21+x
2
2+x

2
3 = 1, therefore the set of pure states is isomorphic

to the Bloch sphere. We can define the four Pauli cubes

σ0 = {
(

1 0

0 0

)

,

(

0 0

0 1

)

},

σ1 =

√

2

3
{
(

0 1

1 0

)

,

(

1 0

0 0

)

},

σ2 =

√

2

3
{
(

0 0

0 1

)

,

(

0 1

1 0

)

},

σ3 = {
(

1 0

0 0

)

,

(

0 0

0 −1

)

}. (7)

They span the set of Hermitian cubes and we can write ρ = (σ0 + ~x · ~σ)/2, where

~σ ≡ (σ1, σ2, σ3). Hence, the set of density cubes for a two-level system is equivalent to

the set of states of a qubit. This is intuitively expected as the departure from quantum

theory should rather be seen if at least three states are allowed due to genuine third-order

interference.

3.2. Three-level system

For the case of three-level system the hermiticity condition together with normalization

reads:

ρ112 = ρ∗112 = ρ121 = ρ211,

ρ122 = ρ∗122 = ρ212 = ρ221,

ρ113 = ρ∗113 = ρ131 = ρ311,

ρ133 = ρ∗133 = ρ313 = ρ331,

ρ223 = ρ∗223 = ρ232 = ρ322,

ρ233 = ρ∗233 = ρ323 = ρ332,

ρ123 = ρ312 = ρ231 = ρ∗213 = ρ∗321 = ρ∗132

ρ111 + ρ222 + ρ333 = 1,

ρiii ≥ 0, i = 1, 2, 3. (8)

Hence we have in total ten real parameters: ρiii, ρiij ∈ R and z = ρijk ∈ C with all three

different indices, which is two real parameters more (one complex parameter) than what

is required to describe a general state of a quantum mechanical three-level system, a

qutrit. The parameter z brings the crucial difference between the density matrix and

the density cube. If z = 0 the set of cube states is equivalent to the qutrit state space.

Indeed, we can map any density matrix ρij to the density cube ρijk with z = 0 in the
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following way

ρiii = ρii, ρiij =

√

2

3
Reρij , ρijj =

√

2

3
Imρij for i < j, (9)

and vice versa. This mapping preserves the inner product, thus we have a complete

(physical) identification between the two sets.

The analysis becomes more intriguing when we consider some genuine non-quantum

ρijk with z 6= 0. Positivity condition for two density cubes ρ and σ has to be fulfilled,

hence (ρ, σ) ≥ 0. The complete characterization of the set of density cubes remains

an open problem, and here we present one explicit class of states that is in agreement

with the positivity condition and extends standard quantum theory. Consider the pure

states

ρ1= {







0 0 0

0 0 1
2
√
3

0 1
2
√
3

0






,







0 0 1
2
√
3

0 1
2

0
1

2
√
3

0 0






,







0 1
2
√
3

0
1

2
√
3

0 0

0 0 1
2






},

ρ2= {







1
2

0 0

0 0 ω
2
√
3

0 ω∗

2
√
3

0






,







0 0 ω∗

2
√
3

0 0 0
ω

2
√
3

0 0






,







0 ω
2
√
3

0
ω∗

2
√
3

0 0

0 0 1
2






}, (10)

ρ3={







1
2

0 0

0 0 ω∗

2
√
3

0 ω
2
√
3

0






,







0 0 ω
2
√
3

0 1
2

0
ω∗

2
√
3

0 0






,







0 ω∗

2
√
3

0
ω

2
√
3

0 0

0 0 0






},

where ω = ei2π/3. They form a “basis set” (ρi, ρj) = δij . When we refer to the “basis

set” of density cubes, we mean the set of normalized, mutually orthogonal density cubes.

Operationally, it means that states ρi can be distinguished in a single-shot experiment.

Note, that this set is not a complete basis in the vector space of Hermitian cubes. The

quantum parts of these states correspond to density matrices 1
2
(1̂− |ei〉 〈ei|), where |ei〉

are the states of the standard (computational) basis, e.g. |e1〉 = (1, 0, 0)T. This way, to

each pure quantum state |ψ〉 = (c1, c2, c3)
T, we can associate one of three density cubes

ρ(n)(ψ) with the following elements

ρ
(n)
iij = − 1√

6
Re(c∗i cj)

ρ
(n)
ijj = − 1√

6
Im(c∗i cj), i < j (11)

ρ
(n)
iii =

1

2
(1− |ci|2), i = 1, 2, 3

ρ
(n)
123 =

ωn

2
√
3
,

where n = 1, 2, 3. Straightforward verification shows (ρ(n)(ψ), ρ(m)(φ)) = 1
4
(1 +

| 〈ψ|φ〉 |2) + 1
2
cos 2π(n−m)

3
≥ 0, hence the positivity is preserved. Furthermore, one can

verify that there are at most three mutually orthogonal density cubes, within the class

of states ρ(n)(ψ).
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3.3. Non-trivial dynamics

We derived the class of “non-trivial” density cubes, and the next step is to give an

example of genuine “non-quantum” transformation (evolution). We define the unitary

(norm preserving) transformation T : β0 → β, where β0 = {e1, e2, e3} is the standard

basis set, i.e. [en]ijk = δinδjnδkn and β = {ρ1, ρ2, ρ3} is the basis set defined in Eq. (10).

Rather than working directly with the whole set of Hermitian cubes we define the

following subspace spanned by the (sub)basis

E
(n)
ijk = δinδjnδkn, n = 1, 2, 3,

E(4) =
1√
3
{







0 0 0

0 0 1

0 0 0






,







0 0 0

0 0 0

1 0 0






,







0 1 0

0 0 0

0 0 0






}, (12)

E(5) =
1√
3
{







0 0 0

0 0 0

0 1 0






,







0 0 1

0 0 0

0 0 0






,







0 0 0

1 0 0

0 0 0






}.

Note that this is not a complete basis within the vector space of Hermitian cubes.

However, we assume that T keeps the subspace spanned by the subbasis invariant, that

is if ρ ∈ span{E(n)} (n = 1, ..., 5), then necessarily Tρ ∈ span{E(n)}. Recall that T has

been defined as a unitary transformation. Therefore, within this invariant subspace, T

is represented by a 5 × 5 unitary matrix. The basis sets β0 and β are represented by

the vectors

e1 = (1, 0, 0, 0, 0)T, ρ1 =
1

2
(0, 1, 1, 1, 1)T,

e2 = (0, 1, 0, 0, 0)T, ρ2 =
1

2
(1, 0, 1, ω, ω∗)T, (13)

e3 = (0, 0, 1, 0, 0)T, ρ3 =
1

2
(1, 1, 0, ω∗, ω)T,

respectively. The condition Tei = ρi leads to the following matrix

T =
1

2















0 1 1 a1 b1
1 0 1 a2 b2
1 1 0 a3 b3
1 ω ω∗ a4 b4
1 ω∗ ω a5 b5















, (14)

where ai and bi are unknown coefficients. All the columns of the matrix T have to be

orthogonal vectors, hence

a2 + a3 + a4 + a5 = 0,

a1 + a3 + ω∗a4 + ωa5 = 0,

a1 + a2 + ωa4 + ω∗a5 = 0, (15)

b2 + b3 + b4 + b5 = 0,

b1 + b3 + ω∗b4 + ωb5 = 0,

b1 + b2 + ωb4 + ω∗b5 = 0,
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and
∑5

i=1 a
∗
i bi = 0. The set of solutions of the equations above is manifold. Here we

present one particular solution

T =
1

2















0 1 1 1 1

1 0 1 ω∗ ω

1 1 0 ω ω∗

1 ω ω∗ 1 0

1 ω∗ ω 0 1















. (16)

It is easy to verify T being an involution T 2 = 1̂. Transformation T is distinct from any

unitary transformations for a qutrit. To see this, suppose that some unitary U maps the

vector of the standard basis |ei〉 such that |〈ej|U |ei〉|2 = (1 − δij)/2. Note that matrix

U has zeros at the main diagonal, whereas all the off-diagonal elements have non-zero

value. This implies that its columns cannot form a set of orthogonal vectors, and thus

U is not a unitary matrix.

3.4. Measurement and the state update rule

When a measurement is performed and an outcome is obtained, our knowledge about the

state of the system changes and its representation must be updated to be in agreement

with the new knowledge acquired in the measurement. In quantum theory, when we

refer to a state of a N -level system defined by a density matrix ρij , we implicitly assume

that the matrix elements are defined with respect to some basis of orthogonal states

β = {|en〉 , n = 1 . . .N}. We call this basis set a measurement or computational basis.

If a projective (selective or von Neumann) measurement is performed and outcome n

has been observed, the state is updated to a pure state ρij = δinδjn, and each outcome

occurs with the probability pn = ρnn. An operational argument for this update rule

is that immediate consecutive measurements of the same observable should give the

same result. More generally, a non-selective measurement can be performed, i.e. the

outcomes are “merged” into d non-overlapping slots that correspond to the partition of

basis β = {β1, β2, . . . , βd}. The set of outcomes is fully specified by the set of orthogonal

projectors Ps =
∑

|ek〉∈βs
|ek〉 〈ek|, each of which projects onto subspace spanned by βs.

In this case, for an outcome s obtained in a measurement, the generalized projection

postulate (Lüders rule [36]) applies

ρ 7→ 1

ps
PsρPs, (17)

where ps = TrPsρ. The update rule is such that the elements are either re-normalized

ρij 7→ 1
ps
ρij (for |ei〉 , |ej〉 ∈ βs) or “destroyed” ρij 7→ 0 (for |ei〉 6∈ βs or |ej〉 6∈ βs).

In general case, the measurement can be performed in a non-computational basis

β ′ = Uβ, where U is a unitary transformation. In such a case, we can simply apply a

transformation to the initial state ρ′ = UρU † and apply the update rule to the matrix

ρ′ij .
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Figure 2. Genuine three-slit interference. The interferometer consists of two

consecutive transformations T of Eq. (16). The horizontal lines denote three possible

paths a system can take. To compute the third-order interference I123, eight

experimental runs are distinguished in which different set of slits are open or closed

(see Section 2). The setup with the upper slit closed and two lower slits open is shown

here. The numbers close to the paths describe the probabilities of finding the system

in a particular path at the initial and final stage. The experiment described allows

non-trivial third-order interference (see main text).

Now we can use analogy to the quantum case to define the Lüders rule for the

theory of density cubes. When we refer to a density cube ρijk we implicitly assume

that the cube elements are defined with respect to some basis of orthogonal cubes

β = {en, n = 1 . . . N} (for a N -level system in general, see Section 3.7). If a projective

measurement is performed and the outcome n has been observed, the state of system

ρijk is simply updated to a pure state en, i.e. ρijk 7→ δinδjnδkn, and each outcome occurs

with the probability pn = ρnnn. More generally, a non-selective measurement with set

of d outcomes is defined by some partition of computational basis β = {β1, β2, . . . , βd}.
The probability to observe the outcome s can by computed using Eq. (4) and is given

by ps =
∑

ek∈βs
(ek, ρ). Similarly to the quantum case, the generalized update rule is

such the the cube elements are either re-normalized ρijk 7→ 1
ps
ρijk (for ei, ej, ek ∈ βs) or

“destroyed” ρijk 7→ 0 (for ei 6∈ βs or ej 6∈ βs or ek 6∈ βs).

3.5. Genuine three-slit interference

After defining a non-trivial class of states, non-trivial evolution and the measurement

update rule, we show how the theory of density cubes allows for a genuine third-order

interference.

This could be demonstrated either in a triple-slit experiment or its finite-

dimensional analogue, a Mach-Zehnder-like interferometer with three possible paths

and “beam-splitters”, as shown in Fig 2. In standard quantum mechanics, the role

of the first beam-splitter is to prepare a superposition of a system propagating along

the three paths, and the second beam-splitter coherently recombines the beams. For

our purposes, we focus on the Mach-Zehnder three-path interferometer and replace the

beam-splitters with transformation T .

Consider an interferometer, shown in Fig. 2, that consist of two consecutive
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transformations T of Eq. (16) and a filter in between. We distinguish eight different

situations dependent on which set of slits is opened or closed (see Section 2). Let

us compute in detail the conditional probability p100 for situation shown in Fig. 2

(upper slit closed, two lower slits open). The system is initially prepared in a state

e1 (with certainty in the upper path). The probability of finding the system in a state

e1 after passing the first transformation device is zero, [ρ1]111 = 0, therefore, one could

expect that the measurement induced by the filter does not affect the state (as it would

be the situation in quantum theory). However, the state ρ1 has a non-zero element

[ρ1]123 =
1

2
√
2
, hence the update rule defined in a previous section enforces a “collapse”

of the state to the equally weighted mixture 1
2
e2 + 1

2
e3. Therefore, the conditional

probability of finding a system in a upper path after passing the second transformation

device is p100 = 1
2
. Similarly one can compute the conditional probabilities pijk for the

remaining of situations. It is easy to check that I123 =
1
2
.

We speculate on how a potential experiment could test the genuine triple-slit

interference. An experimenter could probe different media that may be implementing

a non-quantum transformation T . By embedding the three slits in such a “T-medium”

one arranges a situation where this operation is applied before and after the propagation

of the system through the three slits, just as shown in Fig. 2.

3.6. Stronger-than-quantum correlations in time

We now show that the theory of density cubes allows violation of the Leggett-Garg

inequality beyond what is quantum mechanically possible. The Leggett-Garg inequality

involves temporal correlations between the measurement outcomes obtained at different

instances of time. Here we consider the measurement with a dichotomic outcome +1 if

the system is found in the state e1, and outcome −1 if the system is not found in the

state e1, as shown in Fig. 3.

Consider a series of runs starting from identical initial conditions such that on the

first set of runs the dichotomic observable A is measured only at times t1 and t2, only

at t2 and t3 on the second set of runs, at t3 and t4 on the third, and at t1 and t4 on the

fourth (0 < t1 < t2 < t3 < t4). Introducing temporal correlations Cij = 〈A(ti)A(tj)〉 one
can construct a combination of them in the form of the Clauser-Horne-Shimony-Holt

expression

K ≡ |C12 − C23 + C34 + C14| ≤ 2, (18)

where the bound holds for classical-like theories (the Leggett-Garg inequality).

In quantum mechanics the bound depends on the degeneracy of the performed

measurement [37]. If the measurements are described by higher-rank projectors and

the state follows the Luders update rule, quantum mechanics allows violation of this

inequality up to |K|QM ≤ 2
√
2 ≈ 2.83, the so-called Tsirelson bound for temporal

correlations [31, 32]. However, within the framework of density cubes it can be readily

verified that the scheme of Fig. 3 predicts C12 = −1, C23 = 0, C34 = −1 and C14 = −1,
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Figure 3. Stronger than quantum temporal correlations. The horizontal lines denote

three possible paths a system can take, which can be thought to be represented by states

e1, e2, and e3 of the main. The evolution is driven by transformation T of Eq. (16)

and we define the dichotomic observable with outcomes +1 (red detector indicates

system in state e1) and −1 (green detector indicates system not in the state e1). The

numbers close to the detectors describe the probabilities of finding the system to have

a particular outcome at various stages of evolution (if no measurement is performed

at the earlier stage). The system is measured successively at various pairs of time

instances in order to establish two-point temporal correlations that enter into the

Leggett-Garg inequality of Eq. (18). The evolution allows violation of the inequality

more than what is permitted in the quantum theory (see main text).

and hence K = 3. Therefore, the experiments measuring temporal correlations and the

strength of violation of the Leggett-Garg inequality can serve as tests of the cube theory.

3.7. Higher-level systems

In general the N -level system can be represented by a Hermitian cube ρijk where

i, j, k = 1 . . .N . The hermiticity condition implies that all the elements ρiij and ρijj are

real, and as it follows from the previous discussion are the “quantum” part of the state.

Genuine non-quantum elements are those ρijk ∈ C where all three indices are different

and they define 2
(

N
3

)

independent real parameters. In total a density cube of a N -level

system has

D(N) = N2 − 1 + 2

(

N

3

)

(19)

real parameters. The non-trivial dynamics can be generated by combining the operation

T defined in the previous section to different sets of three paths.

Note that the theory of density cubes violates the assumption of local tomography.

This assumption holds both in classical and quantum physics and asserts that the state

of a composite system can be fully determined by combining data from measurements

that determine the states of subsystems. Therefore, the number of parameters K(NAB)

describing an unnormalised state of a composite system AB satisfies K(NAB) ≤
K(NA)K(NB), where K(NA) and K(NB) are the number of real parameters required

to describe an unnormalised state of systems A and B [18, 38]. In the theory of density

cubes this assumption is violated. As an example, consider the theory of density cubes
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for a four level system. The number of parameters reads K(4) = D(4) + 1 = 22 >

K(2)K(2) = (D(2) + 1)(D(2) + 1) = 16, so we are missing six parameters for the

specification of an unnormalised state of a composite system. Accordingly, these are

exactly the non-quantum parameters that cannot be determined from local tomography

and require joint measurements.

4. State tomography

Here we briefly give the procedure of reconstructing the density cube elements ρijk from

the measurement data. The quantum part of the cube can be reconstructed by means

of standard quantum state tomography [39]. The only non-trivial part is reconstruction

of genuine non-quantum elements ρijk with all three indices being different. For

simplicity assume N = 3 and therefore there is only one non-quantum complex element

ρ123 = z ∈ C. In order to extract z element we apply the transformation T of equation

(16) and then apply the measurement in the standard basis. Simple calculations show

that the probabilities µi at the detectors are:

µ1 =
1

2
(p2 + p3 + 2

√
3Rez), (20)

µ2 =
1

2
(p1 + p3 −

√
3Rez + 3Imz), (21)

µ3 =
1

2
(p1 + p2 −

√
3Rez − 3Imz), (22)

where pi = ρiii is the probability of measuring the ith result in the standard basis.

From here one can extract the value of z. Generalizations to higher dimensions are

straightforward.

5. Quantum interference and macroscopic realism

Finally, we link second-order interference and violation of macroscopic realism, as

introduced by Leggett and Garg [30]. Similar ideas can be found in Ref. [40]. We

show that the simplest Leggett-Garg-type expression is of the form of I12 term given

in Eq. (1). Under macro-realism, I12 = 0, and therefore macrorealism is violated by

the phenomenon of quantum interference. Similarly, the cube theory as well as all

higher-order tensor theories are at variance with the premises of macroscopic realism.

Let us begin by recalling the assumptions of macro-realism [41]:

• Macrorealism per se: “A macroscopic object, which has available to it two or more

macroscopically distinct states, is at any given time in a definite one of those states.”

• Noninvasive measurability: “It is possible in principle to determine which of these

states the system is in without any effect on the state itself, or on the subsequent

system dynamics.”

Under these assumptions we now derive condition I12 = 0. Consider an evolving macro-

realistic system measured at times t1 and t2. Assume that at time t1 it is in one of two
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macroscopically distinct states. One may think about a bullet shot into a double-slit

experiment that at time t1 propagates through one of the two slits. Here the macroscopic

state is the position of the bullet, i.e. at t1 the position of the slit it goes through. The

measuring apparatus at t1 has the following four settings:

• “00” Both slits open

• “10” Only second slit open

• “01” Only first slit open

• “11” Both slits closed

At time t2, a different apparatus verifies if a system is in a possibly different macro-state

we call “+” (this could be position of the object at the observation screen placed behind

the screen containing the slits). Let us denote by pij the probability of observing the

“+” result at time t2, if setting ij was chosen at time t1. Clearly, p11 = 0. Due to the

macro-realism assumptions the probability p00 has to be given by the sum p01 + p10,

as in every experimental run the system takes a well defined path through a single slit

(macrorealism per se) and its future dynamics is independent of whether the unoccupied

slit is opened or closed (non-invasiveness). Therefore, condition I12 = 0 can be seen as

the simplest Leggett-Garg equality.

6. Conclusions

One might think that in order to observe genuine multi-slit interference it is necessary

to modify the Born rule, i.e. the probability of a particular result should not be given

by the inner product between the relevant states of the theory but perhaps by its

different power. This is not the case as we presented here an explicit theory that

does satisfy the Born rule but nevertheless allows for higher-order interference. The

state in the theory is represented by a mathematical object called “density cube” and

is a natural generalization of the standard “density matrix” in quantum mechanics.

Quantum mechanics is contained in the theory of density cubes, but the latter in addition

contains new “coherence terms” that give rise to the genuine third-order interference in

Sorkin’s classification. The theory of density cubes is the first explicit example of a model

exhibiting higher-order interference. We have shown that density cubes allow violation

of the temporal Tsirelson bound for the Leggett-Garg inequalities, thus illustrating

the stronger-than-quantum correlations. This result indicates an interesting relation

between the Sorkin classification and the strength of correlations in the respective

theories (see also [33]).
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[24] Dakić B and Brukner Č 2011 in Deep Beauty: Understanding the Quantum World through

Mathematical Innovation Ed H Halvorson (Cambridge University Press, New York),

arXiv:0911.0695

[25] Masanes L and Müller M 2011 New J. Phys. 13 063001

[26] Rau J 2011 Found. Phys. 41 380

[27] Chiribella G, D’Ariano G M and Perinotti P 2011 Phys. Rev. A 84 012311

[28] Sinha U, Couteau C, Jennewein T, Laflamme R and Weihs G 2010 Science 329 418
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