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Abstract. It is known from Bell’s theorem that quantum predictions for some

entangled states cannot be mimicked using local hidden variable (LHV) models. From

a computer science perspective, LHV models may be interpreted as classical computers

operating on a potentially infinite number of correlated bits originating from a common

source. As such, Bell inequality violations achieved through entangled states are able

to characterise the quantum advantage of certain tasks, so long as the task itself

imposes no restriction on the availability of correlated bits. However, if the number of

shared bits is limited, additional constraints are placed on the possible LHV models

and separable, i.e. disentangled, states may become a useful resource. Bell violations

are therefore no longer necessary to achieve a quantum advantage. Here we show that

in particular, separable states may improve the so-called random access codes, which

is a class of communication problems where one party tries to read a portion of the

data held by another distant party in presence of finite shared randomness and limited

classical communication. We also show how the bias of classical bits can be used to

avoid wrong answers in order to achieve the optimal classical protocol and how the

advantage of quantum protocols is linked to quantum discord.
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1. Introduction

Quantum communication typically study the efficiency of tasks in which either quantum

bits are communicated between distant parties, or classical bits are communicated

but the parties involved share some quantum correlations. Many problems can be

efficiently solved in this setting and examples include cryptography [1], communication

complexity [2], or computation [3]. Instances of these problems draw their superiority

from the violation of Bell inequalities which require entanglement and the pay off is

that such states outperform all classical-like solutions characterised by local hidden

variable models. In the language of computer science, local hidden variable models

are models of computation where local classical computers execute algorithms based

on input from a potentially unlimited source of random bits. Here we point out new

classes of states, correlated in a quantum way but not necessarily entangled, that may

improve quantum protocols if the randomness shared between distant parties consists

of a finite number of classical or quantum bits. We prove this rigorously for the task

called random access code [4, 5, 6] assisted by two bits of randomness. However, due

to the general nature of the argument, we expect that a similar reasoning will apply to

problems of a similar nature (i.e. where shared randomness is an expensive resource).

Such a restriction is not a limitation of our computing model, as even the universe

does not have access to an unlimited number of bits [7]. Deriving limits on classical

computation and communication that take finite randomness into account is therefore

not only of practical interest, but may also shed light on fundamental questions.

The present work also contributes a new operational meaning to certain measures

of non-classical correlations. Many quantum states that are not entangled, so called

separable states, still posses non-classical features such as those characterised by

quantum discord [8, 9, 10, 11]. The role of quantum discord in communication problems

was quite extensively studied and connections were established with entanglement

transformations [12, 13, 14, 15, 16, 17, 11], coherence of protocols [18], as well as with

the performance of certain problems that can be directly compared to their classical

counterparts [19, 20, 21]. However, the latter link with the discord is established only

for classical-quantum states [19] or for problems with additional constraints such as the

lack of certain reference frames [20, 21]. It is therefore desirable to identify a well-

known communication problem with many applications, that can gain efficiencies from

discorded states.

In this context, studying random access codes assisted with finite randomness is

a natural choice. Indeed, a quantum version of this problem is as old as quantum

information itself [4, 5, 6]. The quantum codes were studied in general probabilistic

theories [22], in relation with Popescu-Rohrlich boxes [23], led to information

causality [24], find applications in quantum finite automata [6], quantum communication

complexity [25], network coding [26], security of quantum-key distribution [27], and

have been recently demonstrated experimentally [28]. Assuming restrictions on shared

randomness, we will show that not only do separable, discorded states allow better
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Figure 1. n→ 1 random access codes with shared randomness. Alice and Bob share a

finite number of classical or quantum bits from a common source (shared randomness).

Alice is allowed to send a single classical bit to Bob, who tries to guess the ith bit, xi, of

Alice’s input string. We show that sharing quantum bits in separable states improves

the worst-case probability of Bob’s correct guess over the best classical protocol.

performance than the best classical solution, they also outperform some entangled states.

1.1. Random access codes

Imagine that Bob would like to know (better than just by sheer guess) a random number

from Alice’s telephone book. Is it necessary for Alice to send Bob the whole book? Or

perhaps she can communicate a fewer number of “encoded” pages such that Bob is

reasonably confident of getting the correct number? Random access codes are strategies

designed to solve this problem. As illustrated in Fig. 1, in a classical n → 1 random

access code (RAC) Alice receives a random n-bit input x, communicates a single bit

c to Bob, who given this piece of information tries to guess the ith bit of Alice, xi,

by outputting his guess bi (in every run i is chosen at random). One may construct

quantum versions of this task by either having Alice communicate a single quantum

bit, or by having Alice and Bob share an entangled quantum state aided by a single

bit of classical communication [29]. We study here the latter version of the problem

and allow for arbitrary quantum states in place of just entangled ones. The role of

quantum discord in the former version of the problem was considered in Ref. [30]. Our

choice makes the relevance of shared randomness more transparent as by restricting the

communication to classical the only additional resource facilitating the process are the

assisting (qu)bits.

The existing quantum codes use a finite number of qubits and are effectively

compared with classical protocols with unlimited shared randomness [31, 29]. Under

such comparison, the quantum code can outperform the classical ones only if it is assisted

by quantum states violating some Bell inequality. This is because all the states that

admit a local hidden variable model (all separable states and some entangled ones,

e.g. [32, 33, 34, 35]) can be simulated with sufficient amount of shared randomness,

bringing no gain to the quantum protocol. However, if the size of the assisting resources

is the same, states that do not violate any Bell inequality may possibly help improve

the efficiency of the quantum protocol over the best classical ones. We stress that this
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reasoning is not specific to random access codes, but also applies more generally to any

task assisted with correlated resources. This suggests that other correlation-assisted

communication protocols can find a similar advantage using separable states.

We therefore restrict the amount of shared classical bits to be the same as the

amount of shared quantum bits and study in detail the case of two assisting (qu)bits.

We first show how classical codes gain additional efficiencies by utilising the bias of the

assisting bits to avoid wrong guesses. Next, we provide quantum protocols assisted by

separable states that outperform the best classical protocols, and show that in some

cases they outperform even protocols assisted by quantum entanglement.

2. Finite classical randomness

A standard figure of merit characterising the efficiency of the RAC is the probability

Pmin of Bob’s correct guess in the worst case scenario (minimised over x and i), i.e.

Pmin = minx,i Pr(bi = xi). Let us recall that we are interested in the n → 1 scenario

with only one bit of classical communication from Alice to Bob and the input of Alice

contains at least two bits, n ≥ 2. In addition to classical communication Alice and Bob

may share assisting classical bits from a common source. If no randomness is allowed

in this scenario Pmin = 0, as there is always a bit that Bob guesses wrongly [31]. In

the presence of shared randomness r, the efficiency Pmin is additionally averaged over

the assisting random bits, Pmin = minx,i
∑

r prPr(bi = xi|r). The following theorem

characterises the maximal Pmin in the presence of two bits of shared randomness.

Theorem 1. A classical n→ 1 RAC assisted with two bits from a common source has

(i) Pmin ≤ 1
2

if n > 2; (ii) Pmin ≤ 2
3

if n = 2; (iii) Pmin ≤ 1
2

for all n > 1 if the assisting

bits have maximally mixed marginal for Bob.

Proof. (i) Let us denote the random bits of Alice and Bob by ra and rb, respectively.

Alice’s classical communication (encoding) is an output of a binary function c = c(x, ra),

and Bob’s guess of xi is also an output of a binary function bi = bi(c, rb). Observe that

for every given input x Alice can only choose from the following four possible encoding

functions: 1) c = 0 independently of ra; 2) c = 1 independently of ra; 3) c = ra;

4) c = 1 ⊕ ra, where ⊕ denotes the binary sum. Of course for different values of x

Alice can (and should) choose different encoding functions. Indeed, we prove that if for

two different inputs x and x′ Alice uses the same encoding function, the probability of

correct guess is no greater than 1
2
. This is done via contradiction, for if Alice chooses

for x and x′ the same encoding function from the options above, her message c is the

same for both x and x′. Accordingly, since Bob is receiving the same message for both

inputs, his guesses of the individual bits of x and x′ for a given rb are the same and this

implies that the probability of any given guess is also the same (both for a fixed rb and

averaged over the shared randomness). Therefore, if his guesses are correct for the bits

of x with probability more than 1
2
, the guess of the differing bit of x′ must be incorrect

with the same probability. Hence, Pmin ≤ 1
2
. Any sound strategy must therefore employ
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different encoding functions of Alice. Since there are only four different such functions

for a fixed input x, the efficiency is at most 1
2

for all n ≥ 3. There is simply not enough

shared randomness for Alice and Bob to do more.

(ii) We now focus on the 2→ 1 RAC. In every protocol run, i.e. for a fixed x, Bob

needs to prepare guesses b1 and b2 for the individual bits of Alice’s input, which we order

as gc,rb = (b1, b2), with indices c, rb describing the variables accessible to Bob. Employing

a method similar to Ref. [6], we define points P (x) = (Pr(b1 = 1|x),Pr(b2 = 1|x)) that

represent the probabilities of Bob’s guesses being equal to 1 for a fixed x. Using the

Bayes rule Pr(bi = 1|x) =
∑

ra,rb
prarbPr(bi = 1|ra, rb, x), and the fact that ra, rb, and x

deterministically specify bi, i.e. Pr(bi = 1|ra, rb, x) = bi, we explicitly write the points

corresponding to the four Alice’s encoding functions listed above:

P1(x
1) = p00g0,0 + p01g0,1 + p10g0,0 + p11g0,1, (1)

P2(x
2) = p00g1,0 + p01g1,1 + p10g1,0 + p11g1,1, (2)

P3(x
3) = p00g0,0 + p01g0,1 + p10g1,0 + p11g1,1, (3)

P4(x
4) = p00g1,0 + p01g1,1 + p10g0,0 + p11g0,1, (4)

where pkl ≡ Pr(ra = k, rb = l) is the distribution of the common source of randomness,

xj denote the four different values of x with index j denoting the different encodings

employed. In order to achieve Pmin > 1
2

all four guesses gc,rb must be different for

different values of c and rb. Namely, in the decomposition of every point Pj(x
j) above

there must be a guess gc,rb = xj, i.e. with the same individual bits as those of xj. If

this is not the case then every guess gc,rb contains at least one individual bit that is

guessed wrongly. Hence the probability of an individual bit being correct is equal to the

probability of the other bit being a wrong guess, i.e. Pmin ≤ 1
2
.

We have shown that efficient codes must involve guesses gc,rb with all different values

for different c and rb. We will now find the optimal strategy maximising Pmin only for

inputs x3 and x4 in Eqs. (3) and (4). Since only two inputs are considered and the

definition of Pmin includes minimisation over all four inputs, this maximisation gives an

upper bound on Pmin. It will turn out that this upper bound is achieved. In the best

case, Bob never outputs a guess with both individual bits guessed wrongly. Assume they

are g1,1 and g0,1 in Eqs. (3) and (4), respectively. Therefore, the best case corresponds

to p11 = 0. Since a guess giving the two bits of x3 correctly must be different from the

guess giving the two bits of x4 correctly, and the probability of guessing any individual

bit is a sum of pkl corresponding to gc,rb = xj and gc,rb = x̄j having the other individual

bit flipped, one may verify that

Pmin = min(p00 + p01, p00 + p10, p01 + p10). (5)

This is maximised for the biased distribution p00 = p01 = p10 = 1
3
, which implies that

the optimal value is Pmin = 2
3
. The optimal code, achieving Pmin = 2

3
, is detailed in

Table 1 where Alice’s encoding and Bob’s output is completely specified.

(iii) Here we again utilize the fact that Bob’s guesses gc,rb must be different for

different values of c and rb. Since (1) involves the marginal distribution of Bob, the
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Table 1. Details of the optimal 2 → 1 classical random access code assisted with

two bits from a common source, ra and rb. These bits are distributed according to the

biased distribution p00 = p01 = p10 = 1
3 and p11 = 0, which is why below we do not

present the case of (ra, rb) = (1, 1). The guesses of Bob are denoted as gc,rb and we

note that for a given input x they never contain both individual bits opposite to x. In

this sense the biased randomness is used to avoid giving wrong answers. By comparing

the individual bits of gc,rb with the individual bits of x one confirms that Pmin = 2
3 .

x (ra, rb) c(x, ra) gc,rb P (x)

00 (0,0) 0 (0,1) (1
3
, 1
3
)

(0,1) 0 (0,0)

(1,0) 1 (1,0)

01 (0,0) 0 (0,1) (0, 2
3
)

(0,1) 0 (0,0)

(1,0) 0 (0,1)

10 (0,0) 1 (1,0) (1, 1
3
)

(0,1) 1 (1,1)

(1,0) 1 (1,0)

11 (0,0) 1 (1,0) (2
3
, 2
3
)

(0,1) 1 (1,1)

(1,0) 0 (0,1)

assumption of maximal mixedness gives P1(x
1) = 1

2
g0,0 + 1

2
g0,1, and there is always an

individual bit of x1 that is guessed with probability 1
2
, thus Pmin ≤ 1

2
.

We would like to emphasise that studies of randomness usually employ so-called

“common randomness”, i.e. pairs of perfectly correlated and locally completely random

bits, whereas our proof shows that one can utilise the bias in the shared randomness to

gain additional efficiency, in this case to avoid giving wrong answers (see Table 1).

3. Finite quantum randomness

Having established the classical bounds we proceed to demonstrate quantum protocols

that exceed them. We present explicit 2→ 1 and 3→ 1 quantum random access codes

assisted with two correlated qubits. These special cases are of particular interest because

they may be concatenated to generate more general n→ 1 quantum codes (see Ref. [29]

for a detailed discussion of this procedure). After introducing the notation and essential

concepts, we present detailed protocols and study their efficiency when assisted with

Bell diagonal states.

Throughout the rest of the paper we employ the Bloch representation of qubit

states and measurements, i.e. the three dimensional vector ~s represents the qubit state

ρ(~s) =
(
1̂ + ~s · ~σ

)
/2, where ~σ ≡ (σ1, σ2, σ3) is the vector of Pauli matrices σx, σy, σz.

A unit vector α̂ represents an ideal measurement with the probability of obtaining a
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measurement outcome α = 0, 1, when measured on the state ρ, being Tr
(

1+(−1)αα̂·~σ
2

ρ
)

.

A general two-qubit state is of the form ρab = 1
4
(1̂ ⊗ 1̂ + ~a0 · ~σ ⊗ 1̂ + 1̂ ⊗

~b0 · ~σ +
∑3

l,m=1Eijσl ⊗ σm), where ~a0 and ~b0 are the local Bloch vectors of Alice

and Bob, respectively. The matrix E is the correlation matrix, and can always be

made diagonal by an appropriate choice of local bases [36]. We therefore assume,

without loss of generality, that the reference frames are appropriately chosen such that

E = diag(E1, E2, E3). If Ei 6= 0 we say that the state is correlated along that axis. We

also make use of the fact that if Alice performs a measurement α̂ with outcome α on

her half of the system, then Bob’s post-measurement Bloch vector is:

~b(α) =
~b0 + (−1)αET α̂

1 + (−1)αα̂ · ~a0
, (6)

where ET is the transposed matrix E (not necessary if E is already diagonal).

We shall explore the relationship between our protocols and a class of quantum

correlations referred to as quantum discord [8, 9, 10, 11]. Specifically, we employ the

normalized geometric measure of quantum discord [37]. A general zero-discord state has

the form σab = p0ρ0⊗ |0〉〈0|+ p1ρ1⊗ |1〉〈1|, and the normalized geometric discord of ρab
is defined to be [20]: D2

a|b(ρab) ≡ 2MinσTr(ρab − σab)2. For Bell diagonal states we have

D2
a|b = 1

2
(E2

2 + E2
3), where it is assumed that E2

1 is the biggest among squared diagonal

elements of E.

3.1. 3→ 1 code

The codes presented here are similar to the codes assisted with quantum

entanglement [29], with the key difference in the choice of Alice’s measurements. We

focus first on the class of Bell diagonal states ρab correlated along all three axes x, y

and z:

ρab =
1

4

(
1̂⊗ 1̂ +

3∑
i=1

Elσl ⊗ σl

)
, (7)

though the presented protocols can give better than classical results for more general

assisting states (e.g. it will be easy to verify that ~a0 can be arbitrary). The protocol is

as follows:

(i) For input x, Alice performs the measurement characterised by the Bloch vector

α̂(x) = ~α(x)/|~α(x)|, where ~α(x) = ( (−1)
x1

E1
, (−1)

x2

E2
, (−1)

x3

E3
),

(ii) Alice sends her measurement outcome c = α to Bob,

(iii) To guess the ith bit of Alice, Bob measures along σi, obtains the outcome βi, and

puts βi ⊕ c as the guess.

To grasp the mechanism of this protocol, note that depending on the input, x, Alice’s

measurement vectors point towards the vertices of a cuboid embedded in the Bloch

sphere (see Fig. (2a)). As a result of her measurement (with outcome α) and the

correlations in the shared state, the post-measurement local Bloch vector on Bob’s
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Figure 2. The quantum 3 → 1 random access code assisted with two qubits. (a)

Alice’s measurement vectors point towards the vertices of a cuboid embedded within

the Bloch sphere. The cuboid is defined by the correlations of the shared quantum

state. (b) Bob’s post-measurement Bloch vectors point towards the vertices of an inner

cube centered at the origin. See main text for explanation how the code works.

side, ~b(α) = (−1)α((−1)x1 , (−1)x2 , (−1)x3)/|~α|, points towards one of the vertices of an

inner cube within the Bloch sphere (see Fig. (2b)). The x, y and z axes correspond

to the direction of Bob’s measurement, depending on whether he is guessing the first,

second or third bit respectively. Depending on her measurement outcome, Alice knows

that Bob’s post-measurement Bloch vector is either pointing towards the vertex of the

cube encoding x or the vertex directly opposite across the origin, encoding x̄ with all

individual bits flipped. Therefore, Alice sends a message to Bob to either flip his guess

or not to flip it. Note that the inner product of Bob’s measurement vectors (along the

axes) with a vector pointing to any vertex is the same, up to a sign. The probability

of correct guess of every individual bit is therefore the same, giving Pmin, and for Bell

diagonal states it is equal to

Pmin =
1

2

(
1 +

1√
E−21 + E−22 + E−23

)
. (8)

Since Pmin >
1
2
, this quantum code is thus more efficient than the best classical code

(see Th. 1 and note that Bell diagonal states have maximally mixed marginals).

3.2. 2→ 1 code

This code can operate on a slightly broader class of states as we now allow E3 to vanish.

The protocol follows the same procedures as in the 3 → 1 case, with the exception

that Alice’s measurements are given by ~α(x) = ( (−1)
x1

E1
, (−1)

x2

E2
, 0), the efficiency of this

quantum code can then be verified to be

Pmin =
1

2

(
1 +

1√
E−21 + E−22

)
, (9)

which is again better than the best classical protocol using bits with maximally mixed

marginals (see Th. 1). Even if Alice and Bob were allowed to share more generally

correlated classical bits, for which Pmin may be as high as 2
3

for the 2 → 1 case, the
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above code may nonetheless still outperform the best possible classical RACs so long as

the assisting qubits are sufficiently strongly correlated. It turns out that entanglement

is not a necessary prerequisite to present such a quantum advantage. We demonstrate

this with concrete examples in the following section.

4. Examples

Consider Werner states, belonging to the class of Bell diagonal states and given by the

mixture of white noise and maximally entangled state [32]:

ρab = (1− q) 1̂⊗ 1̂

4
+ q|ψ〉〈ψ|, q ∈ [0, 1]. (10)

The state is entangled for q > 1
3

and is separable otherwise. Its geometric discord

can easily be verified to be Da|b = q [37]. Since for the Werner states all Ei = ±q,
Eqs. (8) and (9) reveal that the geometric discord directly measures the efficiency of the

n→ 1 quantum codes assisted with this class of states, Pmin = 1
2
(1 +

Da|b√
n

) for n = 2, 3.

Moreover, it is the presence of quantum discord in the assisting states that empowers

the quantum advantage.

The same statement likely holds for more general codes. For example, concatenating

2 → 1 code assisted by the Werner state as in Ref. [29] one finds that the efficiency of

2m → 1 code is given by

Pmin =
1

2

(
1 +

(
Da|b√

2

)m)
. (11)

The concatenation of the quantum codes requires 2m − 1 pairs of qubits in the Werner

state and a fair comparison with the classical case is then made by replacing the qubit

pairs with correlated bits that have maximally mixed marginals. Numerical simulations

indicate that 4→ 1 classical RACs formed through the concatenation procedure cannot

achieve Pmin >
1
2
. We conjecture in general that the concatenation of 2 → 1 classical

RACs assisted with bits having maximally mixed marginals cannot give Pmin >
1
2
, and

therefore that the quantum advantage is present for any m, as indicated in Eq. (11).

We now show that a separable state may be used to outperform the best classical

code assisted with two correlated random bits. The example once again utilises Bell

diagonal states. Recall that the classical bound is P 2→1
cl = 2

3
≈ 0.667 for all classical

2→ 1 RACs, and P 3→1
cl = 1

2
for all classical 3→ 1 RACs. By optimising the efficiency

of the 2 → 1 quantum code, see Eq. (9), over the separable Bell diagonal states one

finds that the optimal state has E1 = E2 = 1
2

and E3 = 0, which gives the efficiency

Pmin = 1
2
(1+ 1

2
√
2
) ≈ 0.677, slightly above the classical bound. Better results are obtained

for the 3→ 1 quantum code. By optimising Eq. (8) over separable Bell diagonal states,

the best state has E1 = E2 = E3 = 1
3

and the efficiency is Pmin = 1
2
(1 + 1

3
√
3
) ≈ 0.596,

considerably above the classical bound. Note that there may exist a quantum code

achieving better efficiencies, utilising some other class of separable states or following a

different procedure.
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In the last example we show that separable states can outperform some entangled

states. We have already demonstrated that using a separable state the 2→ 1 quantum

code may achieve efficiencies of at least Pmin = 1
2
(1+ 1

2
√
2
). Comparing this with Eq. (11),

one can see that it outperforms the protocol assisted with the entangled Werner states

for 1
3
< q < 1

2
. It remains to show that there is no better quantum protocol for 2 → 1

quantum code assisted with the Werner states. This follows from the optimality of the

protocol for the maximally entangled state |ψ〉 shown in Refs. [29, 6], the fact that the

completely mixed state encodes local randomness giving at most Pmin = 1
2
, and that the

Werner state is a mixture of these two states.

Although quantum discord empowers quantum advantage in our examples and is

proportional to the efficiency of the protocol for fixed classes of states it should be

noted that the amount of the geometric quantum discord for different classes of states

is not an indicator of the usefulness of the states for quantum random access codes.

Namely, our optimal separable state for 2 → 1 code has discord Dsep = 1
2
√
2
≈ 0.354

that corresponds to Pmin = 1
2
(1 + Dsep), but Werner states have DWer = q and the

corresponding Pmin = 1
2
(1 + DWer√

2
). Therefore, Werner states containing more discord

than the separable state, i.e. DWer ∈ ( 1
2
√
2
, 1
2
), still give worse Pmin than the separable

state. The precise physical quantity that is a resource for better quantum codes is at

present unknown.

Finally we would like to comment on a variation of quantum random access codes

that allows Alice to send a qubit to Bob in place of both of them sharing correlated

qubits. Results presented here may suggest that Alice should be able to send Bob noisy

states (as opposed to pure states) and still be able to beat the classical limit. This is

indeed the case as we will briefly explain for the 2 → 1 code. The classical limit is

known to be 1
2

if we allow for uncorrelated local randomness [31]. The optimal quantum

protocol that beats this bound encodes the input x into pure quantum states |ψx〉 with

Bloch vectors ~ψx = ((−1)x1 , (−1)x2 , 0). If Bob now measures along x (y) axis in order

to read the first (second) bit his worst case probability of correct guess is 1
2
(1 + 1√

2
).

Suppose we perform the same measurements on white noise 1
2
1̂. The outcomes of the

measurements are completely random, which is enough to give as good a result as the

best classical protocol in the worst case. If Alice’s encoding is in the form of a mixed

state q |ψx〉 〈ψx|+ (1− q)1
2
1̂, its corresponding Bloch vector is q ~ψx. Applying the same

protocol, we find that Pmin = 1
2
(1 + q√

2
), which is always better than classical except for

the completely mixed state of q = 0.

5. Conclusions

We demonstrated that separable states are a useful resource in random access codes

as soon as finite shared randomness in the quantum and classical protocols is counted

in the same way, i.e. bits are replaced with qubits. This is in particular relevant if

randomness is not a freely available resource.

We hope the example given here opens a research avenue on efficiency of solutions
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to various problems in the presence of finite randomness. This is of both practical

and fundamental interest. On the practical side, computers can use only a finite and

restricted set of random bits for computations and therefore separable states are likely

to enlarge the class of states that allows quantum advantages once these restrictions

are taken into account. On the fundamental side, it would be interesting to know

if entanglement is necessary to demonstrate in a Bell-like scenario deviations from

predictions of local hidden variable models that involve only a finite number of bits.
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