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ABSTRACT

Quantum error mitigation (QEM) is essential for improving the reliability of noisy

intermediate-scale quantum (NISQ) devices, particularly as current platforms scale

toward 20 qubits where full quantum error correction remains infeasible. This project

evaluates and compares three major QEM strategies—Zero-Noise Extrapolation

(ZNE), Probabilistic Error Cancellation (PEC), and a machine learning-based

framework (ML-QEM)—to assess their effectiveness and scalability. Through

theoretical analysis and simulation study of ZNE under various noise models and

depth, we show that while ZNE significantly enhances fidelity for shallow circuits,

its effectiveness deteriorates rapidly in deeper or entangled circuits due to amplified

decoherence and extrapolation instability. PEC provides an unbiased solution by

inverting the noise channel but incurs prohibitive sampling and calibration costs in

circuits with more than a few qubits, limiting its scalability. To address these

limitations, we propose a modular ML-QEM approach that trains supervised models

on 2-qubit circuits and applies them to larger circuits using a patch-based strategy.

By incorporating hardware-aware and circuit-level features, the model aims to

generalize noise behavior without relying on full noise tomography or ideal outputs

during inference. While our ML implementation remains limited to simulated 4-qubit

circuits due to time and resource constraints, results imply the viability of this

framework as a scalable alternative. Rather than serving as a complete solution, this

patch-based ML approach is positioned as a forward-looking data-driven direction.

Overall, this study provides a comparative analysis of key QEM techniques and

contributes a proof-of-concept ML-QEM workflow that bridges small-scale training

with medium-scale application, offering practical potential into building adaptive

error mitigation strategies for future superconducting quantum hardware.

Keywords: Quantum Error Mitigation (QEM), Zero-Noise Extrapolation (ZNE),

 Machine Learning (ML), Superconducting Qubits, Noisy Intermediate-Scale 

Quantum (NISQ), Patch-Based Modeling
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CHAPTER 1

INTRODUCTION

Quantum computation promises significant advantages over classical computing in solv-
ing certain classes of problems, such as integer factorization, quantum simulation, and
combinatorial optimization. However, the practical realization of this advantage faces the
challenge of unavoidable errors in physical quantum devices. The current period is what
John Preskill has termed the “Noisy Intermediate-Scale Quantum” (NISQ) era (Preskill,
2018). These hardware limitations pose critical challenges to performing accurate and
scalable quantum computations.

In the long term, achieving fully fault-tolerant quantum computers is considered the ulti-
mate goal. This requires the implementation of Quantum Error Correction (QEC), which
corrects errors in real time, ensuring that computations remain stable and accurate. How-
ever, these schemes typically demand gate fidelities exceeding 99.9%, low crosstalk, and
hundreds to thousands of physical qubits per logical qubit. These requirements exceed the
capabilities of today’s quantum hardware, where gate fidelities, connectivity, and qubit
counts are still limited (Cai et al., 2023).

In light of these constraints, an alternative line of research has emerged: quantum error
mitigation (QEM). Unlike error correction, which encodes and protects quantum infor-
mation throughout the computation, error mitigation seeks to post-process or restructure
the computation to suppress the impact of noise, without requiring additional qubit re-
sources. Early foundational work by (Temme et al., 2017) introduced two principal QEM
approaches: zero-noise extrapolation (ZNE) and probabilistic error cancellation (PEC).
These methods have since been extensively developed and tested across a variety of hard-
ware platforms.

Nevertheless, while QEM techniques have demonstrated clear improvements in shallow,
low-qubit-number circuits, their scalability remains in question. PEC, for instance, re-
quires prior noise characterization and an exponential number of samples with increasing
qubit count, making it intractable for medium-sized devices (Song et al., 2019). ZNE,
though more lightweight in implementation, suffers from numerical instability and fitting
uncertainties as circuit depth or system size grows (Khan et al., 2024). These limitations
are now well documented in the literature: (Takagi et al., 2022) and (Tsubouchi et al.,
2023) both derive rigorous lower bounds showing exponential sampling cost scaling in
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general Markovian noise settings, while (Qin et al., 2023) further illustrate sublinear error
suppression limits even with optimal protocols.

As modern quantum processors begin to reach the 20–100 qubit scale, there is growing
interest in hybrid or learning-based QEM approaches (Liao et al., 2024). These meth-
ods leverage machine learning (ML) to statistically model the relationship between noisy
circuit outcomes and ideal observables, often without requiring complete noise reconstruc-
tion. This trend reflects a broader shift in NISQ-era mitigation research: from analytically
structured methods toward data-driven strategies that may offer better scalability and prac-
tical deployment on noisy quantum hardware.

With the ultimate target at the IQM 20Q Garnet chip’s hardware, our goal is twofold:
to evaluate the effectiveness of classical QEM methods such as ZNE, and to explore the
potential of supervised ML models to learn noise-aware corrections across realistic multi-
qubit settings. To this end, we first establish a theoretical framework for describing noise
using Kraus and Lindblad formalisms, and then implement mitigation protocols across
simulated circuits with various depths, gate configurations, and noise models. The project
contributes to the ongoing effort in making scalable, near-term quantum computation more
reliable by assessing the capabilities and limitations of different QEM strategies under
realistic constraints.

Although all simulations are performed on Qiskit’s noise-aware simulator using realis-
tic models, the study contribute to a deeper understanding of error mitigation in realistic
superconducting architectures and inform strategies for future deployment on mid-scale
quantum devices.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this section, prior work was surveyed on quantum error mitigation (QEM) with a par-
ticular focus on its applicability to medium-scale superconducting quantum processors.
This section first review the characteristics of basic superconducting qubit and our target
architecture, then analyze mainstream QEM strategies—Zero Noise Extrapolation (ZNE),
Probabilistic Error Cancellation (PEC), and Machine Learning-based QEM (ML-QEM)—
in terms of principles, scalability, and limitations.

2.1 Superconducting Qubits and Target 20-Qubit Superconducting
Architecture

Superconducting qubits are among the most mature platforms for quantum computation,
widely adopted by industrial systems such as IBM Q, Google Sycamore, and IQM’s Gar-
net architecture. These qubits are realized using electrical circuits based on Josephson
junctions, which introduce nonlinear inductance, called Josephson junction, essential for
defining discrete and controllable energy levels (Clarke & Wilhelm, 2008; Koch et al.,
2007).

With their core shown in Fig.2.1, unlike a simple harmonic oscillator, which has equally
spaced energy levels, the anharmonicity in superconducting qubits provides a nonlinear in-
ductance that breaks the harmonicity of the oscillator, ensuring uneven energy levels. The
SEM image and circuit diagram of a typical superconducting qubit is shown in Fig.2.1.
This property allows the qubit to isolate two specific levels, typically denoted as ground
state and excited state (used as the computational |0⟩ and |1⟩ states), to act as the compu-
tational basis states.
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(1) (2)

Figure 2.1: Josephson junction and energy levels
(1) The SEM image showcases the physical realization of a Josephson junction.
(2) Equivalent circuit models and energy spectra:

(a) LC oscillator with harmonic potential
(b) Equally spaced energy levels
(c) Josephson junction creates anharmonicity
(d) Unequal level spacing enables qubit control
(Blue dashed curve: harmonic approximation)

The effective Hamiltonian of the circuit can be derived by quantizing the phase variable
ω across the junction. The potential energy of the circuit is described by the Josephson
potential:

U(ω) = −EJ cos(ω), (1)

where ω is the phase difference across the junction, and EJ = h̄Ic
2e is the Josephson energy,

with Ic being the critical current of the junction.

The Hamiltonian of a superconducting qubit can be approximated as:

H = 4ECn
2 − EJ cosε, (2)

whereEC = e2

2(CS+CJ )
is the charging energy,EJ is the Josephson energy, n is the number of

Cooper pairs, and ε is the superconducting phase difference across the Josephson junction.

By expanding the cosine term to second order around its minimum, the Hamiltonian ap-
proximates that of a quantum harmonic oscillator:

H ≈ 4ECn
2 +

1

2
EJε

2. (3)
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The energy levels of this harmonic oscillator are equidistant. However, the higher-order
terms from the cosine expansion introduce anharmonicity, leading to non-equidistant en-
ergy levels:

Em = mh̄ω − α

2
m(m− 1), (4)

where m is the energy level index, ω is the qubit frequency, and α is the anharmonicity.
The anharmonicity is defined as:

α = E21 − E10, (5)

where E21 and E10 are the energy differences between the first two transitions.

This anharmonicity is essential for preventing leakage into higher energy levels during
qubit operations. It enables precise control of the |0⟩ ↔ |1⟩ transition, which is the basis
for quantum gates. However, the anharmonicity also makes these qubits sensitive to en-
vironmental noise, such as electromagnetic interference and thermal fluctuations, which
must be carefully mitigated to achieve high-fidelity operations.

The operational reliability of superconducting qubits is characterized by two coherence
times: T1 (energy relaxation time) and T2 (dephasing time). These parameters are influ-
enced by noise from material defects, stray electromagnetic fields, and control line imper-
fections (Kjaergaard et al., 2020). The relationship between them is:

1

T2
=

1

2T1
+

1

Tφ
, (6)

where Tφ is the pure dephasing time caused by low-frequency noise. These coherence
limitations directly impact the fidelity of quantum gates and the accumulation of noise in
multi-qubit circuits.

Target Device: 20-Qubit Superconducting Architecture

This work focuses on a representative 20-qubit superconducting architecture as our target
platform, the IQM 20Q Garnet chip. The figure.2.2 can see the key components: qubits
in red area are coupled through bus resonators that enable interactions during multi-qubit
gates. Qubit drive lines control the state of individual qubits, while readout resonators
measure the states of the qubits via shared readout lines. Readout lines further allow in-
formation from multiple readout resonators to be extracted through a common path.

The performance of the IQM 20Q Garnet chip is limited by various noise sources inherent
to the qubit design and environmental interactions. These errors arise from interactions
with the environment and limitations in the hardware. Amplitude damping and dephasing,
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for example, are sensitive to environmental factors such as electromagnetic fluctuations
and low-frequency flux noise, which can induce energy relaxation and coherence loss. The
qubit drive lines and readout resonators, essential for qubit state manipulation and mea-
surement, can also introduce imperfections in signal delivery, contributing to depolarizing
noise and exacerbating thermal fluctuations, leading to generalized amplitude damping.
By mitigating various noise sources in the design, this project aims to achieve higher fi-
delity operations and establish a foundation for implementing advanced noise mitigation
strategies.

Figure 2.2: Schematic of the IQM 20Q Garnet architecture: Red blocks represent qubits;
horizontal bus resonators enable entangling gates; readout and control lines are shared across mul-
tiple elements.

Given the severe limitations imposed by such noise processes on circuit depth and fidelity,
especially in mid-scale superconducting devices, quantum error mitigation strategies—an
emerging class of techniques designed to enhance computational accuracy without requir-
ing full fault tolerance—are now reviewed in detail.

2.2 Quantum Error Mitigation Strategy

2.2.1 Quantum Error Correction

Quantum error correction (QEC)(Nielsen & Chuang, 2010) is a foundational framework
that enables fault-tolerant quantum computation by actively detecting and correcting errors
during computation. Physical qubits are inherently noisy, suffering from bit-flip (|0⟩ ↔
|1⟩) and phase-flip (|+⟩ ↔ |−⟩) errors due to interactions with their environment, such
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as amplitude damping, dephasing, or crosstalk. Without mitigation, these errors rapidly
accumulate and corrupt quantum information.

To counteract this, QEC encodes a logical qubit into multiple physical qubits. A simple
example is the three-qubit repetition code, which protects against bit-flips via redundancy.
More advanced codes, like the Shor code and Steane code, correct both bit-flip and phase-
flip errors using a combination of stabilizer measurements and classical decoding. These
codes follow the stabilizer formalism, wherein the quantum state is projected onto a sub-
space stabilized by a commuting set of Pauli operators. Any deviation from this subspace
indicates the occurrence and location of an error.

The Surface Code: A Scalable QEC Architecture Among all error-correcting codes,
the surface code is widely regarded as the most scalable and hardware-friendly scheme for
near-term fault-tolerant quantum computation (Devitt et al., 2013; Fowler et al., 2012). As
shown in figure2.3, it arranges physical qubits on a two-dimensional lattice, where local
stabilizer measurements detect both bit-flip and phase-flip errors. Its geometric locality
makes it compatible with superconducting qubit architectures, which often feature planar
layouts.

The surface code defines two types of stabilizers:

• Vertex operators (or X-type) detect bit-flip errors:

Av =
∏

j→star(v)

Xj

• Plaquette operators (or Z-type) detect phase-flip errors:

Bp =
∏

j→boundary(p)

Zj

A surface code of lattice size d× d defines a single logical qubit using d2 physical qubits,
achieving fault-tolerance thresholds near 1% error rates under realistic noise. Errors are
identified by measuring stabilizer eigenvalues, known as the syndrome, and are corrected
using classical decoding algorithms such as Minimum-Weight Perfect Matching (MWPM)
or machine learning-based decoders.

Despite its theoretical elegance, full-fledged QEC remains out of reach for current noisy
intermediate-scale quantum (NISQ) devices. Implementing surface code error correction
requires:
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Figure 2.3: Structure of the surface code: Qubits are positioned on edges, with vertex (X-
type) and plaquette (Z-type) stabilizers defined on nodes and faces respectively. Local measure-
ments detect and localize bit-flip and phase-flip errors (Devitt et al., 2013).

• Hundreds to thousands of high-fidelity physical qubits per logical qubit;

• Fast and repeated mid-circuit stabilizer measurements;

• Real-time feedback and decoding.

These demands exceed the capabilities of today’s quantum hardware, where gate fidelities,
connectivity, and qubit counts are still limited. Moreover, even basic QEC implementa-
tions often require hardware-level customizations not yet supported on general-purpose
quantum platforms like IBM Q or Rigetti.(Murali et al., 2019)

Consequently, quantum error mitigation (QEM) has emerged as a practical alternative for
near-term quantum computation. Unlike QEC, QEM does not require redundancy or mid-
circuit operations, but instead relies on statistical and algorithmic techniques to reduce
noise effects during post-processing. This study focus on QEM as a more viable strat-
egy for improving the accuracy of computations on 20-qubit superconducting platforms.
The following sections review existing QEM techniques, including zero noise extrapola-
tion (ZNE), probabilistic error cancelation (PEC), andmachine learning-based approaches,
along with their strengths and limitations in realistic settings.
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2.2.2 Foundational

Two foundational QEM techniques—Zero-Noise Extrapolation (ZNE) and Probabilistic
Error Cancellation (PEC)—were introduced by Temme (Temme et al., 2017) . ZNE esti-
mates the zero-noise limit of an observable by executing the same circuit at scaled noise
levels and performing Richardson extrapolation or some other fitting models to infer the
ideal result. PEC, in contrast, performs quasiprobabilistic resampling over a reconstructed
inverse noise model, effectively canceling noise through statistical inversion of quantum
channels.

These methods are notable for requiring no additional qubits or error-correcting codes.
Because it operates at the level of circuit scheduling and measurement post-processing, it
can be deployed on virtually any quantum platform without requiring modifications to the
device or extensive noise characterization. Experimental studies on real quantum devices,
such as those by Khan(Khan et al., 2024), have demonstrated that ZNE can significantly
improve measurement accuracy, especially in shallow circuits and for simple observables.

However, both ZNE and PEC suffer from fundamental scalability issues. As originally
noted by Temme(Temme et al., 2017), the sampling cost for accurate extrapolation or can-
cellation grows exponentially with the number of qubits and circuit depth. Theoretical
studies by Takagi et al.(Takagi et al., 2022) and Tsubouchi et al.(Tsubouchi et al., 2023)
have rigorously demonstrated that the variance of mitigated observables grows exponen-
tially under general Markovian noise. Even in favorable settings like global depolariz-
ing noise, they showed that extrapolation becomes prohibitively expensive without strong
noise structure assumptions. From a statistical standpoint, (Qin et al., 2023) demonstrated
that while mitigation reduces bias, it does not eliminate variance: the residual error after
extrapolation scales sublinearly as O(ε0Nε), with γ ≈ 0.5, where N is the gate count.
This behavior, rooted in the law of large numbers, implies diminishing returns for deeper
circuits even under ideal extrapolation.

In the context of this project, these scalability issues are particularly salient. Our simula-
tions confirm that while ZNE can recover expectation values with reasonable accuracy for
circuits involving fewer than 10 qubits or with depth less than 15 layers, its performance
degrades rapidly beyond this regime. For instance, when applied to 20-qubit random cir-
cuits with moderate depth, the extrapolated values exhibit strong fluctuations, and fitting
becomes unreliable regardless of the extrapolation order. In some cases, the extrapolated
results even fall outside the physically plausible range (e.g., [−1, 1]) for Pauli expectation
values), further highlighting the numerical instability.
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In practice, additional complications arise due to the assumption that artificial noise scaling—
such as repeated gate insertions—faithfully reflects the underlying logical noise. This as-
sumption breaks down in real devices where noise is non-static, context-dependent, and
may include correlated crosstalk or drift over time. For example, hardware studies such as
those by Khan et al. (Khan et al., 2024) have reported non-monotonic or erratic extrapo-
lation behavior in mid-depth circuits, attributable to such non-idealities.

Probabilistic error cancellation offers theoretical advantages: it can, in principle, exactly
invert Markovian noise processes. However, PEC requires complete knowledge of the
device’s noise profile, typically obtained via gate set tomography (GST) or randomized
benchmarking. Song et al. (Song et al., 2019) demonstrated PEC on 1- and 2-qubit super-
conducting circuits, successfully reconstructing noise channels and performing quasiprob-
ability resampling. While error suppression was achieved, even these minimal implemen-
tations required considerable sampling resources and calibration overhead. The sampling
cost of PEC also grows exponentially with system size, making its application to circuits
with more than 10 qubits practically infeasible.

Given that our target system is a 20-qubit processor with only simulated access and no
detailed noise characterization, PEC is not a feasible choice for this study. PEC thus was
excluded from our simulations and focused instead on scalable alternatives.

These theoretical and practical insights underscore the need for alternative or hybrid QEM
strategies like combining with readout error mitigation, dynamical decoupling, or machine
learning.(Cai et al., 2023)) This motivates the core of our study: exploring the use of su-
pervised machine learning for quantum error mitigation in 20-qubit settings. Unlike ana-
lytical methods, ML-based QEM learns the statistical relationship between noisy and ideal
outputs directly from data, offering potential scalability and generalization to complex,
hardware-specific noise that traditional methods struggle to address.

A comprehensive review by Cai(Cai et al., 2023) categorizes QEM techniques into three
primary classes: extrapolation-based (e.g., ZNE), probabilistic (e.g., PEC), and machine
learning–based approaches. The review emphasizes that while PEC is theoretically opti-
mal for certain noise models, its practical scalability is hindered by the exponential growth
in required samples and noise characterization complexity. In contrast, ZNE requires less
overhead but becomes unreliable in deeply layered or structurally irregular circuits. Impor-
tantly, the authors highlight machine learning (ML) as a potentially scalable QEM strategy,
owing to its ability to learn from statistical correlations in data without requiring explicit
knowledge of the full noise model.
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2.2.3 Machine Learning Approaches to Quantum Error Mitigation

Motivated by the limitations of conventional QEMmethods, machine learning-based quan-
tum error mitigation (ML-QEM) has emerged as a promising alternative, particularly for
large-scale or structurally irregular quantum circuits. A prominent framework in this di-
rection is proposed by Liao et al.(Liao et al., 2024), who introduce a general ML-QEM
pipeline consisting of three stages: encoding, execution, and prediction (Fig.2.4). In the
encoding stage, circuit-level features (e.g., gate types, depth, topology) and hardware-
specific metadata (e.g., T1, T2, gate fidelities) are extracted as input to a learning model.
During execution, the circuit is run on a noisy quantum processor to collect observables
such as expectation values ⟨Ô⟩noisy. A supervised MLmodel—typically a random forest or
neural network—is then trained to predict the ideal outcome ⟨Ô⟩target, using noiseless sim-
ulations of small-scale circuits as reference labels. Once trained, this model can mitigate
errors without further circuit repetitions, significantly reducing runtime and calibration
overhead. Their results show that random forest (RF) models offer a favorable trade-off
between accuracy and efficiency, outperforming ZNE in several benchmark settings while
requiring fewer resources.

Figure 2.4: ML-QEM Framework:
A quantum circuit is encoded into circuit and hardware features. These, along with the noisy ex-
pectation value ⟨Ô⟩noisy, are input into a trained machine learning model, which predicts the ideal
outcome ⟨Ô⟩mit. The model is trained on small circuits with known ⟨Ô⟩target.

Our work follows this direction but with additional constraints: since ideal data from large-
scale circuits are unavailable, a local-to-global strategy inspired by Czarnik et al. (Czarnik
et al., 2021) was adopted. Specifically, this study trained a regression model on small-
scale circuits whose ideal results can be efficiently simulated under a realistic noise model.
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These are then used to train regression models (e.g., random forest) and deploy them on
structurally similar large circuits. This modular strategy bypasses the need for ideal out-
puts on large test circuits while still capturing key noise behaviors. Such a decoupling of
training and inference also enhances portability across devices with similar characteristics.

Other notable contributions reinforce the growing diversity of ML-QEM strategies Kim
(Kim et al., 2022) applied neural networks to mitigate readout errors by learning nonlin-
ear mappings from raw measurement outcomes to ideal bitstrings. Lee and Park(Lee &
Park, 2023) introduced transfer learning techniques to extend trained models from 7- to
13-qubit systems, relying on conditional independence assumptions. Meanwhile, Srushti
et al. (Patil et al., 2025) proposed a graph neural network (GNN) approach that encodes
hardware topology and gate noise into graph structures, enabling generalization across dif-
ferent device layouts using shallow subcircuits for training.

Together, these works illustrate a unifying theme: ML-QEM methods exploit local struc-
ture, statistical regularities, and minimal supervision to overcome the cost barriers of tradi-
tional techniques. They do so by learningmappings either from raw data (e.g., observables)
or from engineered features, avoiding the need for explicit inversion of quantum channels.

This study prioritize interpretability and practicality. Rather than mimicking prior mitiga-
tion results (as done in Liao’s mimicry variant), our models are trained to directly predict
ideal observables from noisy outputs and encoded circuit/device features. This reduces
reliance on auxiliary methods like ZNE or PEC and enables simpler deployment across
simulated architectures. Furthermore, by selecting small, classically simulable subcircuits
for training, this study ensure compatibility with current NISQ-era simulators while laying
the groundwork for extension to real hardware.
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CHAPTER 3

QUANTUM NOISE MODEL

Quantum error mitigation strategies, such as those discussed above, rely fundamentally on
the statistical relationship between noisy and ideal quantum measurements. To model and
mitigate these errors effectively—especially in the absence of full device calibration—one
must understand the underlying structure of quantum noise. The primary noise sources
affecting the IQM 20Q chip include amplitude damping, generalized amplitude damping,
dephasing, and depolarizing noise. These errors are often described by noise channels,
which can be characterized using either Kraus operators or Lindblad master equations,
depending on the nature of the system.

3.1 Open Quantum Systems and Dynamical Map

For open quantum systems, the environment (or reservoir) interacts with the system, lead-
ing to the exchange of quantum information—such as populations, coherence, and correlations—
between the two, as shown in Figure 3.1. This interaction causes:

• Dissipative effects: Quantum information, including energy and coherence, is irre-
versibly lost from the system to the reservoir.

• Non-Markovian effects: Part of this lost information temporarily flows back from
the reservoir to the system, restoring coherence or reducing entropy. In this work,
we adopt the information backflow definition of non-Markovianity.

After such an interaction, the pure initial state of a system transitions to a statistical mixture
of pure states with respective probabilities. This transition, where a pure state evolves into
a mixed state, is known as decoherence.

To analyze the dynamics of an open quantum system, one considers it as a subsystem of a
larger closed system S +B, where B represents the environment (or bath) adjoined to the
principal system S. The total Hilbert space is given by H = HS ⊗HB. The initial state
of the total system is assumed to be separable:

φSB = φS ⊗ φB, (7)

which is an important assumption for the subsequent CPTP map. The purity is without
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Figure 3.1: Open System Map

loss of generality because one can always purify the environmental state by introducing
an even bigger environment and this does not affect the dynamics of the principal system
itself.

Since the total system is closed, the total system evolves unitarily:

φ(t) = USB

(
φS ⊗ φB

)
U †
SB.

Figure 3.2: System Dynamic Map

To obtain the evolution of the principle system S only, the environmental degrees of free-
domwill be traced out and then the reduced density matrix of the system can be represented
by the Kraus operator-sum representation:

φS(t) = TrB(U(φ⊗ |eB⟩ ⟨eB|U †)) =
∑

n

KnφK
†
n.
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The Kraus operators Kn acting on the system’s Hilbert space HS are defined asKn =

⟨kB|USB|eB⟩where {|kB⟩} is an orthogonal basis for the environment’s Hilbert spaceHB,
and |eB⟩ is the environment’s initial state.

As the fig.3.2, a quantum channel E describes the principle system’s evolving under the
influence of the environment. It is represented as a completely positive trace-preserving
(CPTP) map:

E(φ) =
∑

n

KnφK
†
n. (8)

where the Kraus operators encode the non-unitary effects of environmental interactions on
the system, including decoherence and dissipation. And to ensure that the evolution of the
open system is physically valid, the Kraus operators must satisfy two key conditions:

1. Trace preservation: The map preserves the trace of the density matrix, ensuring that
probabilities remain normalized:

∑

n

K†
nKn = I, (9)

where I is the identity operator.

2. Complete positivity: The map preserves positivity not only for the system’s state but
also for any larger composite system. Physically, if E is applied on a subsystem, it
produces a semi-positive definite physical state. Mathematically, for any extended
Hilbert spaceHS ⊗HE , the map E ⊗ IE is positive:

E ⊗ IE(φSE) ≥ 0, ∀φSE ≥ 0. (10)

3.1.1 Von Neumann equation from Kraus representation

(Chia et al., 2016) The evolution of closed quantum systems is governed by the Von Neu-
mann equation, which is a generalization of the Schrödinger equation for mixed states.
While the Schrödinger equation describes the evolution of pure states, the Von Neumann
equation captures the time evolution of the density matrix of the system, φ(t), under a
Hamiltonian H .

Starting from Kraus evolution over an infinitesimal time interval ∆t:

φ(t+∆t) =
∑

n

Kn(∆t)φ(t)K†
n(∆t),

where
∑

n K
†
n(∆t)Kn(∆t) = I and assume that there is only one Kraus operator given by

a unitary matrix.
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Unitary Evolution (First Order): For a closed system, the presence of only one Kraus
operator is assumed, represented by a unitary matrix:

K0(∆t) = U(∆t) = e−iH∆t ≈ I− iH∆t+O(∆t2),

Substituting this into the Kraus representation:

φ(t+∆t) = K0φ(t)K
†
0 = φ(t)− i∆t[H, φ(t)],

Dividing by ∆t and taking the limit to zero, we arrive at the Von Neumann equation:

φ̇(t) = −i[H, φ(t)].

3.2 Master Equation in Lindblad Formalism

While the Von Neumann equation provides a foundation for understanding the evolution of
closed systems, real-world quantum systems are rarely isolated. Interactions with the envi-
ronment introduce noise and dissipation, requiring a more general framework to describe
the non-unitary evolution of open systems.

The dynamics of open quantum systems can be effectively described by the master equa-
tion, which provides a framework for understanding both coherent and dissipative effects.
This section explores the master equation in the context of the Lindblad formalism, begin-
ning with the Markov approximation, followed by a brief discussion of the Kraus repre-
sentation as a foundation for the Lindblad form.

3.2.1 Markov approximation

(OpenCourseWare, 2012) In many physical scenarios, the interaction between the princi-
ple system and its environment is weak, and the environment’s correlation time is very
short. This allows the use of the Markov approximation, which assumes that the system’s
evolution is memoryless and local in time. Under this approximation, the environment
rapidly ”forgets” the information it acquires from the system, preventing any significant
feedback. This condition holds if the correlation time of the environment, δtE , is much
shorter than the coarse-grained time scale δtcoarse over which the system’s evolution is ob-
served, which in turn must be much shorter than the system’s damping time δtdamp, i.e.,
δtE ≪ δtcoarse ≪ δtdamp. When this separation of time scales is satisfied, the system’s
evolving can be described by a master equation, which is a first-order differential equation
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governing the time evolution of the density matrix φ(t): dρ
dt ≈ ρ(t+∆t)−ρ(t)

∆t . This descrip-
tion captures both the coherent Hamiltonian dynamics and the dissipative effects caused
by the environment.

3.2.2 Lindblad form

The reduced density matrix φ(t) of the system evolves according to the master equation:

dφ

dt
= L[φ],

where L is the Liouvillian superoperator. For Markovian dynamics, the master equa-
tion takes the Lindblad form, a general form consistent with complete positivity and trace
preservation:

L[φ] = − i

h̄
[H, φ] +

∑

j

(
LjφL

†
j −

1

2
{L†

jLj, φ}
)
. (11)

Here:

• H is the Hermitian Hamiltonian describing a coherent evolution of the system.

• Lj are Lindblad operators representing dissipative processes due to the environment.

• {x, y} = xy + yx denotes the anti-commutator.

Short derivation of the Lindblad form

The total Hamiltonian of the system, including the principal system (S), the environment
(B), and their interaction (int), is written as:

Htot = HS +HB +Hint,

where:
Hint =

∑

k

Sk ⊗ Bk,

and Sk are operators acting on the system’s Hilbert space HS , while Bk act on the envi-
ronment’s Hilbert spaceHB.

The unitary evolution operator for the total system is expanded to the second order in ∆t:

Etot(∆t) = e−iHtot∆t ≈ I− iHtot∆t− 1

2
(Htot∆t)2 +O(∆t3).
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Using the second-order expansion of Etot(∆t), the total density matrix evolves as:

φtot(t+∆t) = Etot(∆t)φtot(t)E†
tot(∆t)

= φtot(t)

− i∆t
[
Htot, φtot(t)

]

− ∆t2

2

(
Htot
[
Htot, φtot(t)

]
+
[
Htot, φtot(t)

]
Htot
)

+O(∆t3).

where each line represent the contributions to the state at time t in terms of increasing order.
To study the dynamics of the principal system alone, the trace is taken over the bath:

φS(t+∆t) = TrB
[
φtot(t+∆t)

]
.

For the first-order term:

TrB
(
− i∆t[Htot, φtot(t)]

)
= −i∆tTrB

[
HS +HB +Hint, φtot(t)

]
= −i∆t

[
Heff, φS

]
.

For a large environment, one expects its state to be close to a thermal state φB = 1
Z e

−HB/kT

and to be decorrelated from the principal system, i.e. φtot(t) approx φS(t) tensor φB. In such
a case [HB, φB] = 0 and Heff = .... (Details omitted here, as this term simply encodes the
static average effect of the environment.)

Here, TrB
[
HB, φtot

]
= 0 assuming no initial correlations, and the remaining effective sys-

tem Hamiltonian becomes Heff = HS +
∑

k βkSk, where βk = TrE[BkφE].

For the second-order term:

TrB
(
− ∆t2

2

[
Htot[Htot, φtot(t)]

])
= −∆t2

2
TrB
[
H2

intφint(t)− 2Hintφint(t)H
†
int + φint(t)H

2
int
]

(12)

= ∆t2
∑

k

(
LkφSL

†
k −

1

2

{
L†
kLk, φS

})
(13)

Weak coupling and the Markov approximation permit the omission of the second-order
term TrB

(
−∆t2

2

[
HS, [HS, φS]

])
= 0. Coarse-graining over δtcoarse ≫ δtE further en-

forces rapid decay of reservoir correlations, eliminatingmemory effects (TrB[Bk′†(t′)Bk(t)φB ∝
δkk′δ(t− t′)]).
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As a result, the interaction term will be:

H2
int = H†

intHint =

(
∑

k

S†
k′ ⊗ B†

k′

)(
∑

k

Sk ⊗ Bk

)
=
∑

k,k′

(
S†
k′Sk ⊗ B†

k′Bk

)
.

Combining this result with the first-order term,

φS(t+∆t) = φS(t)− i∆t[Heff, φS] +∆t2
∑

k

(
LkφSL

†
k −

1

2

{
L†
kLk, φS

})
,

For the entire evolution:

φ(t+∆t) = K0φ(t)K
†
0 +

∑

k

KnφK
†
n,

Assume the no-jump evolutionK0 corresponding to the coherent part of the evolution

K0 = I+∆t(−iH +K) +O(∆t2),

where H = HS and K = −1
2

∑
k L

†
kLk, with Lk being the Lindblad operators describing

transitions due to reservoir interactions.

The jump evolution Kn for higher order (n > 0 )describe dissipative processes: Kn =√
∆tLk +O(t3/2)

Taking the limit∆t → 0, the Lindblad equation is obtained, consisting of the unitary term
and dissipative term:

φ̇(t) = L[φ] = −i[H, φ(t)] +
∑

k

(
Lkφ(t)L

†
k −

1

2
{L†

kLk, φ(t)}
)
.

3.3 Examples for Quantum Noise Models

The following sections explore four fundamental noise models(Havel, 2003)(Nielsen &
Chuang, 2010): amplitude damping, generalized amplitude damping, phase damping, and
depolarizing noise. These models describe common physical noise processes. The noise
process channel is represented as a completely positive trace-preserving (CPTP) map:

E(φ) =
∑

n

Knφ̂K
†
n,

whereKn are the Kraus operators satisfying completeness condition:K†
0K0 +K†

1K1 = I
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3.3.1 Amplitude Damping

Amplitude damping is a model that describes energy loss from a quantum system to its en-
vironment. For example, it models processes like spontaneous emission, where a quantum
system transitions from the excited state |1⟩ to the ground state |0⟩.

|ψ1⟩ → |ψ0⟩ (e.g., decay |1⟩ → |0⟩)

System-Environment Interaction: Let the system be coupled to the environment in the
initial state |0E⟩. The joint evolution under a operation E is:

E|0⟩S|0⟩E = |0⟩S|0⟩E
E|1⟩S|0⟩E =

√
1− γ|1⟩S|0⟩E +

√
γ|0⟩S|1⟩E,

where γ is the probability of decay during the interaction.

KrausOperators: To describe the system’s reduced dynamics, project the environment’s
state and trace it out. The Kraus operators satisfying the completeness relation are:

K0 = ⟨0E|E|0E⟩ =
(
1 0

0
√
1− γ

)
, K1 = ⟨1E|E|0E⟩ =

(
0

√
γ

0 0

)
.

Master Equation: Assuming γ = Γ∆t, where Γ is the decay rate, the following approx-
imation is made for small ∆t:

K0 = σ−σ+ +
√

1− γσ+σ− ≈ I− Γ∆t

2
σ+σ−,

K1 ≈
√
Γ∆tσ−

where σ+ = |1⟩⟨0| and σ− = |0⟩⟨1|. The dynamic of the density matrix φ is:

φ(t+∆t) =
∑

k

Kkφ(t)K
†
k.

Expanding to first-order in ∆t, the Lindblad master equation is derived:

dφ
dt

= Γ

(
σ−φσ+ − 1

2
{σ+σ−, φ}

)

Generalized Amplitude Damping (GAD)

The Generalized Amplitude Damping (GAD) channel models the interaction of a two-
level quantum system (qubit) with a thermal bath at finite temperature. It captures both
energy relaxation and thermal excitation, making it particularly useful for systems where
the environment has a non-zero temperature.(de Oliveira et al., 2020)
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Kraus Operator for GAD channels The generalized amplitude damping (GAD) chan-
nel can be described by considering two distinct probabilities:

• Probability 1− ξ (ground-state dominance):

E|0⟩S|0⟩E = |0⟩S|0⟩E,

E|1⟩S|0⟩E =
√

1− γ|1⟩S|0⟩E +
√
γ|0⟩S|1⟩E.

• Probability ξ (excited-state dominance):

E|1⟩S|1⟩E = |1⟩S|1⟩E,

E|0⟩S|1⟩E =
√

1− γ|0⟩S|1⟩E +
√
γ|1⟩S|0⟩E.

The interaction of the qubit with a thermal bath is characterized by the thermal popula-
tion ξ of the excited state |1⟩ and the ground state |0⟩. The Kraus operators,satisfying the
completeness relation

∑3
i=0 K

†
iKi = I, for the GAD channel are defined as follows:

K̂0 =
√
1− ξ

(
1 0

0
√
1− γ

)
, K̂1 =

√
1− ξ

(
0

√
γ

0 0

)
,

K̂2 =
√
ξ

(
0 0

√
1− γ 0

)
, K̂3 =

√
ξ

(√
γ 0

0 0

)
.

Here:

• γ = 1− e−λt is the decay probability over time t, where λ is the decay constant.

• ξ ∈ [0, 0.5] is the thermal population of the excited state, defined as:

ξ =
1

1 + eβε
,

where β = 1
kBT , kB is the Boltzmann constant, and energy gap ε = ε2 − ε1 .

Master Equation The dynamics of the GAD channel can also be expressed in the Lind-
blad form of the master equation:

dφ

dt
= −i[H, φ] +

∑

k

(
LkφL

†
k −

1

2
{L†

kLk, φ}
)
,

where the second term is the Lindblad dissipator, and Lk are the Lindblad operators:

L1 =
√

Γ(1− ξ)|0⟩⟨1|,

L2 =
√

Γξ|1⟩⟨0|,
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where γ = Γ∆t is the decay rate.

Substituting these operators into the master equation yields:

dφ

dt
= −i[H, φ] + Γ(1− ξ)

(
σ−φσ+ − 1

2
{σ−σ+, φ}

)
+ Γξ

(
σ+φ̂σ− − 1

2
{σ+σ−, φ}

)
.

The first term represents coherent evolution under the system Hamiltonian Ĥ , while the
remaining terms describe relaxation and thermal excitation induced by the thermal bath.

Long-Time Limit In the long-time limit (t → ∞, p → 1), the system relaxes to the
thermal state:

φ̂thermal =

(
1− ξ 0

0 ξ

)
.

This state corresponds to thermal equilibrium with the environment.

3.3.2 Depolarizing Noise

Depolarizing noise describes a uniform distribution of errors, such as bit-flip, phase-flip,
or both. This model leads to a complete mixing of the quantum state with the maximally
mixed state.

Kraus Operators:

K0 =
√

1− pI, K1 =

√
p

3
σx, K2 =

√
p

3
σy, K3 =

√
p

3
σz,

where p is the depolarization probability, and σx, σy, σz are Pauli matrices.

Master Equation:
dφ
dt

=
λ

3

∑

i=x,y,z

(
σiφσ

†
i −

1

2

{
σ†
iσi, φ

})
.

This equation highlights the uniform distribution of errors across the state space.

3.3.3 Phase Damping

Phase damping describes the change of quantum phase between states, leading the loss
of quantum coherence without energy exchange, such as random phase noise in the envi-
ronment. This process does not affect the populations (diagonal elements of the density
matrix) but reduces the coherence (off-diagonal elements).
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Kraus Operators: The phase damping process can be described by Kraus operators that
implement an action proportional to υ�[0, 1], which is described as the probability of de-
phasing, on |1⟩ state:

K0 =

(
1 0

0
√
1− υ

)
, K1 =

(
0 0

0
√
υ

)
.

Input a general single-qubit density matrix: φin =

(
a c

c∗ 1− a

)
the evolution under the

phase damping channel becomes:

φ =

(
a

√
1− υc

√
1− υc∗ 1− a

)

Master Equation: For small∆t, assuming υ = Υ∆t, whereΥ is the dephasing rate, we

approximate
√
1− υ ≈ 1−

Υ∆t

2

The density matrix evolves as:

φ(t+∆t)− φ(t)

∆t
=

⎛

⎜⎜⎝
0 −

Υ

2
c

−
Υ

2
c∗ 0

⎞

⎟⎟⎠ .

For small ∆t, we approximate the Lindblad equation:

dφ
dt

≈
φ(t+∆t)

∆t
=

Υ

2
(σzφσz − φ) ,

σz is the Pauli-Z operator.
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CHAPTER 4

RESEARCHMETHODOLOGY

4.1 Zero Noise Extrapolation (ZNE)

4.1.1 Theoretical Framework

In noisy intermediate-scale quantum (NISQ) devices, fully error-corrected computation
remains infeasible due to limited qubit count and low gate fidelity. An alternative approach,
Zero Noise Extrapolation (ZNE), attempts to estimate noise-free expectation values by
deliberately amplifying noise and extrapolating the results to the zero-noise limit.

To understand the feasibility of this method, we begin with the Lindblad master equation,
which describes Markovian open quantum system dynamics 11:

dφ(t)

dt
= Lλ(φ(t)) = − i

h̄
[H, φ(t)] +

∑

j

(
Ljφ(t)L

†
j −

1

2
{L†

jLj, φ(t)}
)
, (14)

whereLλ is a superoperator encoding both the coherent evolution and decoherence effects.
For common noise processes, this yields exponential decay in observable expectation val-
ues:

E(λ) = Tr[Aφ(T )] = E0e
−αλ, (15)

withE0 representing the ideal (noise-free) result and α a model-dependent decay constant.

We now provide explicit derivations for three canonical noise channels to support this
exponential ansatz.

Depolarizing Noise In Qiskit, the single-qubit depolarizing noise channel is defined as:

Eλ(φ) = (1− λ)φ+ λ
I

2
, (16)

where λ ∈ [0, 1] is the depolarizing error probability(param_phase in Qiskit), and I/2

denotes the maximally mixed state. Its Lindblad form which was derived in Eq. (3.3.2) is:

dφ

dt
= λ

3∑

j=1

(σjφσj − φ) = λL(φ), (17)

where we define the Liouvillian superoperator L(φ) =
∑3

j=1 σjφσj − 3φ. To explicitly
analyze the decay of observable expectation values, consider a generic initial state φ(0) =
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[
φ00 φ01

φ10 φ11

]
.Under the Lindblad equation, the off-diagonal elements decay as

dφ01

dt
=

dφ∗10
dt

=

−4λφ01, and the diagonal elements evolve according to
dφ00

dt
= λ(1 − 2φ00),

dφ11

dt
=

−
dφ00

dt
. Solving these first-order differential equations yields:

φ(t) =

[
1
2 +

(
φ00(0)− 1

2

)
e−2λt φ01(0)e−4λt

φ10(0)e−4λt 1
2 −

(
φ00(0)− 1

2

)
e−2λt

]
. (18)

which implies that for coherence-sensitive observables like X and obtains:

⟨X(t)⟩ = ⟨X(0)⟩e−4λt. (19)

Phase Damping The phase damping channel in Qiskit captures dephasing processes,
where coherence is lost without energy relaxation. It is described by the Kraus operators:

A0 =

[
1 0

0
√
1− b

]
, A1 =

[
0 0

0
√
b

]
,

where b ∈ [0, 1] is the dephasing probability (param_phase in Qiskit).

Given dephasing rate Υ = λ
∆t with the effective discrete nosie strength λ applied per unit

time step∆t, we compute the time evolution using the Lindblad equation of phase damping
model 3.3.3. The off-diagonal elements decay exponentially:

dφ(t)
dt

=

[
0 −Υφ01(t)

−Υφ10(t) 0

]
=

1

∆t

[
0 −λφ01(t)

−λφ10(t) 0

]
, (20)

which leads to the solution:

φ(t) =

[
φ00 φ01e−Υt

φ10e−Υt φ11

]
. (21)

whereΥ is the dephasing rate. This similarly results in exponential decay ofX-expectation
values:

⟨X(t)⟩ = ⟨X(0)⟩e−Υt = E0e
−αλ. (22)

where α = t/∆t and E0 = ⟨X(0)⟩. This confirms that under phase damping, the X-
observable decays exponentially with respect to the noise strength λ.
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Amplitude Damping In Qiskit, the amplitude damping channel is described by a set of
Kraus operatorsmodeling energy relaxation into a thermal equilibrium. For a qubit initially
in state φ, the channel acts as:

Ea,p1(φ) =
1∑

j=0

AjφA
†
j +

1∑

j=0

BjφB
†
j , (23)

where:

A0 =
√

1− p1

[
1 0

0
√
1− a

]
, A1 =

√
1− p1

[
0

√
a

0 0

]
,

B0 =
√
p1

[√
1− a 0

0 1

]
, B1 =

√
p1

[
0 0
√
a 0

]
,

where a is the damping strength parameter (denoted param_amp in Qiskit), and p1 is the
excited-state population, representing the asymptotic thermal population of the |1⟩ state.

We write the density matrix in standard form by using the Lindblad master equation3.3.1:

φ(t) =

[
φ00(t) φ01(t)

φ10(t) φ11(t)

]
.

Under Eq. (3.3.1), the time evolution of the matrix elements is:

dφ00
dt

= Γφ11,
dφ11
dt

= −Γφ11,
dφ01
dt

= −Γ

2
φ01,

dφ10
dt

= −Γ

2
φ10. (24)

This implies that:

φ(t) =

[
1− φ11(0)e−Γt φ01(0)e−Γt/2

φ10(0)e−Γt/2 φ11(0)e−Γt

]
. (25)

The expectation value of the Pauli-X operator is:

⟨X(t)⟩ = ⟨X(0)⟩e−Γt/2, (26)

These derivations justify the use of exponential fitting in ZNE. Since all three noise models
preserve populations but degrade coherence, we select ⟨X⟩ as our primary observable. This
quantity is sensitive to the real part of the off-diagonal density matrix elements (φ01+φ10),
making it ideal for capturing noise-induced decoherence. In contrast, ⟨Z⟩ depends only on
populations and is thus less informative under dephasing and amplitude damping.

26



Gate Folding and Extrapolation To implement noise amplification, we adopt the gate
folding strategy. Any unitary operation U is replaced by a folded version:

U → U ⊗ I = UU †U, (27)

which is equivalent to the identity operation in the noiseless case, but introduces additional
noise when applied on hardware or in simulation. For Markovian noise, each application
of a gate followed by noise channelNλ contributes a fixed noise strength λ. Repeating the
folded gate c = 2r+1 times therefore results in a total noise strength (2r+1)λ, Repeating
the folding multiple times effectively increases the noise by a scaling factor c, resulting in:

φ
U−→ UφU † N−→ N (UφU †)

N−→ ......
folding with c times−→ (Nλ)

c (UφU †) , (28)

where Nλ is the noise channel associated with a single application of U .

Assuming the noise per gate remains constant, the total effective noise strength scales
linearly:

E(cλ) = E0e
−αcλ + ε, (29)

with ε representing statistical error or model bias. Extrapolation to the zero-noise limit Ê0

is then performed by fitting measurements at multiple fold factors c ∈ {1, 3, 5} using:

f(c) = Ae−Bc + C, Ê0 = lim
c→0

f(c) = A+ C. (30)

4.1.2 Simulation Workflow

To evaluate the practical effectiveness of Zero Noise Extrapolation (ZNE), we perform a
series of numerical experiments using Qiskit. Our simulation framework is designed to
examine the impact of ZNE across multiple noise models, gate types, and circuit depths.
All circuits are executed with 10,000 shots per configuration, and each setup is repeated
300 times to ensure statistical stability.

Visualizing ZNE Behavior via Noise Scaling We begin by visualizing the core mech-
anism of ZNE using a minimal single-qubit circuit. A Hadamard gate H is applied to the
initial state |0⟩, ideally resulting in an output of ⟨X⟩ = 1. Under amplitude damping noise,
the measured expectation decays with increasing noise strength. To amplify noise artifi-
cially, we apply gate folding at scale factors c ∈ {1, 2, 3, 5, 7, 9}, resulting in longer circuit
duration and increased decoherence, while preserving logical functionality.

This setup demonstrates how expectation values degrade under noise and how extrapo-
lation can recover the ideal value. The variance due to finite sampling is approximately
Var[Ẽ] ≈ 1

10000 , ensuring reliable statistical convergence.
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Figure 4.1: ZNE recovery of ⟨X⟩ from a noisy Hadamard circuit under amplitude damping
noise. The extrapolated value closely approximates the ideal expectation.

(1) ZNEAccuracy vs. Noise andCircuit Depth To quantitatively assess ZNE accuracy,
wemeasure themean squared error (MSE) between the extrapolated and ideal values across
a variety of noise models and circuit depths. Random single-qubit circuits are constructed
with depths from 1 to 4 using both Clifford gates (H,S,X, Y, Z) and non-Clifford rotations
(Rx(π/4), Ry(π/4), Rz(π/4)). For each depth and noise model, we simulate the circuit
with and without ZNE, and compute the MSE:

MSE =
1

N

N∑

i=1

(Êi − Eideal)
2,

where Êi is the ZNE-estimated observable and Eideal is the exact noiseless result. Here,N
is the number of independently sampled random circuits (e.g., 300 repetitions) per noise
setting, providing statistically averaged error estimates.

We consider the following canonical noise models, which have been discussed before:

• Depolarizing noise: Simulates uniform Pauli error with probability p.

• Amplitude damping: Models spontaneous relaxation from |1⟩ → |0⟩.

• Phase damping: Models dephasing with no energy loss.

This evaluation tests how ZNE performance scales with both noise strength and circuit
complexity.

(2) Gate-Specific Fidelity underMixed Noise Beyond circuit-wide expectation values,
we examine the fidelity of ZNE mitigation for individual quantum gates. Each gate (X ,

28



Y , Z, H , S, T , Rx, Ry, Rz) is applied to |0⟩, and the resulting noisy state φ is compared
against the ideal output σ using the state fidelity:

F (φ,σ) =

(
Tr
√√

σφ
√
σ

)2

.

A composite noise model (combining depolarizing, amplitude, and phase damping) is
applied. Gate folding is used to generate a sequence of noise-amplified circuits with
c ∈ {1, 2, 3, 4, 5}, followed by exponential fitting to estimate the zero-noise output. Sim-
ulations use Qiskit’s ‘statevector‘ backend to compute fidelity exactly, avoiding classical
sampling noise. This analysis evaluates whether ZNE generalizes across gate types with
varying noise sensitivities.

(3) Fidelity vs. Circuit Depth under Backend Noise To study scalability, we analyze
howZNE fidelity varies with increasing circuit depth. Random single-qubit gate sequences
of increasing length are generated, with each gate drawn from the combined Clifford and
non-Clifford gate set. A composite Lindblad noise model is applied uniformly across all
layers.

For each depth, we compare the fidelity of the noisy and ZNE-mitigated output states
against the ideal target. This depth-dependent analysis reveals how circuit complexity
interacts with noise accumulation and ZNE recovery capacity.

Together, these three evaluation schemes—MSE scaling, gate-specific fidelity, and depth-
resolved performance—provide a comprehensive characterization of ZNE effectiveness
under diverse and realistic quantum noise settings.

4.2 Machine Learning-Based Quantum Error Mitigation

To address the challenge of quantum errors in near-term devices, we adopt a supervised
learning-based quantum error mitigation (QEM) strategy. This method is inspired by the
ML-QEM framework proposed by(Liao et al., 2024), which fits noisy circuit outputs to
their corresponding ideal results using data from small-scale circuits. While their study
demonstrated the effectiveness of learning-based mitigation for shallow random circuits,
it did not explicitly address generalization to larger circuits—though such scalability was
highlighted as a promising direction. Our approach extends this idea by incorporating
realistic device characteristics from superconducting quantum processors and structural
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features of quantum circuits, enabling effective error mitigation without relying on large-
scale ideal simulations.

Ultimately, our goal is to apply this method to large-scale circuits executed on real su-
perconducting quantum processors. However, for such circuits, the corresponding ideal
outputs cannot be efficiently obtained due to the exponential growth of the Hilbert space.
To validate the generalization ability of our model in a controlled setting, we simulate both
training and testing circuits using Qiskit’s noise-aware backends. Specifically, we train our
model using small 2-qubit random circuits and evaluate its performance on larger 4-qubit
circuits, both simulated using the same realistic backend (FakeAthensV2) that mimics the
behavior of actual QPUs. This simulation framework allows us to emulate the noise char-
acteristics of a real quantum processor while still accessing ground-truth ideal results via
noise-free simulation, thereby enabling rigorous evaluation of the mitigation performance.

4.2.1 Patch-based ML-QEMMethod

Our quantum error mitigation method is based on supervised learning, aiming to predict
ideal measurement expectation values from noisy outputs of quantum circuits executed
on superconducting quantum processors. Inspired by prior works (Liao et al., 2024), we
model the mitigation task as a regression problem that maps noisy observations and rele-
vant circuit/device features to their ideal counterparts. To extend the applicability of the
model to larger circuits, we adopt a local patch model approach, which decomposes large
circuits into overlapping small qubit subsets (patches), applies trained local models on
these patches, and then aggregates their outputs to form a global prediction, which can be
summerized in two stages: training and inference.

Training Phase. We construct a training dataset using randomly generated 2-qubit cir-
cuits (patches). Each training circuit is simulated twice: once under a realistic noise model
to obtain the noisy output, and once ideally (without noise) to obtain the ideal output. The
training process proceeds as follows:

1. Patch Circuit Generation: We generate a large number of 2-qubit circuits with vary-
ing depths, gate configurations, and noise-affected qubit pairs.

2. Feature Extraction: For each patch p, we extract:

• Noisy measurement outputs: ⟨Ẑi⟩noisy for each qubit in the patch;

• Device noise features: T1, T2, gate error rates, readout error of each qubit in
the patch;

30



• Circuit structure features: depth, total number of gates, average gates per qubit,
two-qubit gate density, etc.

These features are concatenated into a feature vector xp, while the corresponding
ideal expectation values yp = (⟨Ẑi⟩ideal) serve as training labels.

3. Model Training: We train a supervised regression model Fp : xp 1→ yp, which
minimizes the mean squared error loss:

min
θp

N∑

k=1

∥∥Fp(x(k)p ; θp)− y(k)p

∥∥2
2

where θp are the learnable parameters of themodel. In this work, we employRandom
Forest Regression asFp, motivated by its strong performance and robustness in prior
studies (Liao et al., 2024).

Inference and Aggregation. To apply the trained patch model to a larger circuit with
N > 2 qubits, we divide the circuit into overlapping patches of two adjacent qubits. For
instance, a 4-qubit circuit would be divided as:

Q1 = {q0, q1}, Q2 = {q1, q2}, Q3 = {q2, q3}

The inference proceeds as follows:

1. For each patch p, extract the same feature vector xp as used during training, based
on the noisy execution of the full circuit.

2. Feed xp into the trained model to obtain the patch-wise predicted ideal outputs:

ŷp = Fp(xp)

3. Since each qubit may appear in multiple patches, we average the predictions from
all patches covering that qubit. Let N denote the number of patches that include
qubit i, the final predicted ideal expectation value is:

⟨Ẑi⟩ML =
1

N

∑

p

[ŷp]

where the summation is taken over all patches p containing qubit i, and [ŷp] denotes
the component corresponding to qubit i within patch p.
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This patch-based structure leverages the locality of noise in quantum processors and eables
the use of small-scale, accurately simulatable circuits to mitigate errors in larger circuits.

Error Metric. To quantitatively assess the performance of the mitigation method, we
compute the discrepancy between the predicted and ideal observables using the 22 norm
error. Given the noisy outputs ⟨Ẑ⟩noisy, the ML-mitigated outputs ˆ⟨ˆ⟩ZML, and the ideal
outputs ⟨Ẑ⟩ideal, we define:

εnoisy =
∥∥∥⟨Ẑ⟩noisy − ⟨Ẑ⟩ideal

∥∥∥
2
, εML =

∥∥∥ ˆ⟨ˆ⟩ZML − ⟨Ẑ⟩ideal
∥∥∥
2
,

where ⟨Ẑ⟩ = (⟨Ẑ0⟩, ⟨Ẑ1⟩, . . . , ⟨ẐN−1⟩)&.

A reduction in εML relative to εnoisy indicates successful error mitigation by the model.

Although we report the prediction error using the 22 norm, this quantity can be easily
converted to the commonly used mean squared error (MSE). Specifically, if a circuit has
N qubits, then the MSE is simply the squared 22 norm divided by the number of qubits:

MSE =
ε2

N

where ε is the 22 error. This allows our results to be compared fairly with methods such as
zero-noise extrapolation (ZNE), which are often evaluated using MSE.

4.2.2 Simulation Setup and Backend Details

In a real quantum error mitigation scenario, the ultimate aim is to correct outputs from
large quantum circuits executed on noisy quantum hardware, where ideal outputs are not
available. To evaluate the patch-based ML-QEM approach, a realistic simulation pipeline
using Qiskit 2.0 and noise-aware backend models was constructed. In particular, we use
the FakeEssexV2 backend, which emulates a IBM’s 5-qubit superconducting processor
with qubit-specific relaxation times (T1), dephasing times (T2), gate fidelities, and readout
errors. On top of these hardware characteristics, we define a custom noise model com-
bining depolarizing, amplitude damping, and phase damping channels to simulate mixed
noise effects. These are used consistently in training and evaluation.

Qubit Topology. To simplify the experimental setup while retaining meaningful qubit
interactions, we restrict the study to the first four physical qubits {q0, q1, q2, q3} of the
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FakeEssexV2, which form a connnected subgraph with the topology:

q0 q1 q2

q3

Training Data Generation. For each patch, we generate 1000 random 2-qubit circuits
composed of single-qubit rotations (rx, rz) and CNOT gates.These logical circuits are
transpiled() to the FakeEssexV2 backend, which ensures they are physically mapped
to the correct qubit pair and respects the hardware’s gate directionality and native basis
gates. Each 2-qubit circuit is executed under two conditions:

1. Noisy simulation: Using fake provider FakeEssexV2, yielding ⟨Zi⟩noisy measure-
ments;

2. Ideal simulation: Using AerSimulatorwith noise_model=None , yielding ⟨Zi⟩ideal.

We repeat this process across all selected patch pairs, collecting a training set of approxi-
mately 300 circuits per patch. For each training instance, we extract:

• Device features: T1, T2, gate error, readout error for each qubit; CNOT gate error;
connectivity flag

• Circuit features: circuit depth, gate counts, average gate per qubit;

• Noisy outputs: Pauli-Z expectation values from noisy simulation.

This yields supervised pairs (xp, yp), where xp is the input feature vector, and yp is the ideal
Pauli-Z expectation values for the patch.

Testing on Simulated QPU. We generate 200 random 4-qubit circuits that use only the
physical qubits {q0, q1, q2, q3} on FakeEssexV2 to obtain noisy measurement outcomes
⟨Zi⟩noisy;

To apply our patch-based ML-QEM model, we partition each 4-qubit circuit into overlap-
ping 2-qubit patches based on the device topology:

Q1 = {q0, q1}, Q2 = {q1, q2}, Q3 = {q2, q3}

For each patch Qp, we extract local features xp, and apply the corresponding pre-trained
2-qubit model Fp to obtain predictions ŷp = Fp(xp). Finally, for each qubit i, we average
the predictions from all patches containing i to obtain the global ML-mitigated estimate
⟨Ẑi⟩ML.
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In real experimental settings, ideal reference values ⟨Zi⟩ideal are not accessible due to the
exponential cost of classical simulation. However, since we conduct our experiments us-
ing simulated backends, we are able to generate ideal outputs using a noiseless simulator.
These ideal values allow us to quantitatively assess the accuracy and effectiveness of the
ML-based mitigation.

Evaluation and Visualization. To assess the effectiveness of our patch-basedML-QEM
method, we evaluate prediction accuracy using the 22-distance between the mitigated and
ideal Pauli-Z expectation values, as introduced earlier. We focus on comparing the raw
noisy outputs ⟨Z⟩noisy and theML-mitigated outputs ⟨Z⟩ML against the ideal baseline ⟨Z⟩ideal
obtained from noiseless simulation.

To visualize the performance across the 200 test circuits, we adopt multiple complementary
methods:

• Error distribution plots display the histogram of errors before and after mitigation,
illustrating how ML-QEM shifts the overall error distribution toward lower values.

• Prediction scatter plots compare the ML-predicted values ⟨Zi⟩ML directly against
their ideal counterparts. A tight clustering along the diagonal y = x reflects accurate
recovery, while deviations expose systematic biases or outliers.

Together, these metrics and visualizations provide both aggregate and per-instance insight
into the performance of the ML-based mitigation strategy under realistic backend noise
conditions.
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CHAPTER 5

RESULTS AND DISCUSSION

In this section, we evaluate the performance of zero-noise extrapolation (ZNE) on a variety
of quantum circuits subject to different types and strengths of noise. The results are ana-
lyzed using two standard performance metrics: mean squared error (MSE) between noisy
and ideal observables, and state fidelity between noisy and ideal final states. We inves-
tigate how ZNE performs under different noise channels, gate types, and circuit depths,
with a particular focus on its scalability limitations in deeper circuits.

5.1 MSE vs. Noise Strength across Noise Types and Circuit Depths

As shown in Fig. 5.1, the application of ZNE consistently reduces the mean squared error
(MSE) between noisy and ideal expectation values. This trend holds across all three tested
noise models—depolarizing, amplitude damping, and phase damping. Among them, ZNE
proves particularly effective against phase damping, which predominantly introduces de-
phasing without energy loss.

For all noise models, MSE grows monotonically with the noise strength parameter, as
expected. As the circuit depth increases, noise accumulates, and both the raw MSE and
the extrapolated error grow accordingly. Nevertheless, ZNE consistently suppresses MSE
compared to the unmitigated results.
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Figure 5.1: ZNE MSE vs Noise Parameter p under different noise models. ZNE reduces
MSE especially under phase damping.
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5.2 Fidelity vs. Gate Type under Mixed Noise

Figure 5.2: ZNE fidelity across different single-qubit gates on a mixed noise model. ZNE
improves fidelity consistently across all tested gates.

To examine how ZNE interacts with different quantum gates, we simulate single-gate cir-
cuits under a mixed noise model combining depolarizing, amplitude damping, and phase
damping noise. As illustrated in Fig. 5.2, ZNE provides fidelity improvements across all
tested gate types, including X , Y , Z, H , S, I and rotation gates. The most notable gains
occur for Clifford gates like X and Y .

5.3 Fidelity vs. Circuit Depth under Mixed Noise

Figure 5.3: Fidelity vs circuit depth on real-device noise model with and without ZNE.
ZNE improves shallow circuits but degrades in deeper ones.

To evaluate the scalability of ZNE, we simulate random single-qubit circuits with increas-
ing numbers of gates, each drawn from a fixed gate set. These circuits are executed under
the same mixed noise model used previously. The results, plotted in Fig. 5.3, reveal that
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state fidelity declines monotonically with increasing circuit depth, reflecting the cumula-
tive effects of quantum noise.

While ZNE is able to partially recover fidelity in shallow circuits—particularly those with
fewer than 15 gates—its effectiveness deteriorates rapidly as circuit depth increases. In
deeper circuits (e.g., 20+ gates), repeated applications of noisy operations drive the quan-
tum state toward a maximally mixed state, effectively erasing any coherence present in the
initial state. In this regime, the fidelity between the noisy state and the original pure state
approaches its theoretical lower bound of 0.5. This results in numerical diminishing in
extrapolating back to the zero-noise limit, especially when using high noise amplification
factors or deep circuits. This behavior is consistent with theoretical studies (Takagi et al.,
2022; Tsubouchi et al., 2023).

These scalability bottlenecks motivate the exploration of alternative mitigation strategies,
such as machine learning-based QEM, which do not rely on analytic extrapolation and
may be better suited to medium-scale noisy quantum devices. In the following sections,
we investigate whether data-driven models can generalize from shallow circuit behavior
to infer error-mitigated outcomes for larger and more complex circuits.

5.4 ML-based results

To evaluate the effectiveness of themachine learning-based quantum error mitigation (ML-
QEM) approach, we analyzed both the error distribution before and after mitigation, as well
as the correlation between mitigated and the ideal expectation values.

On average, fidelity improved from 0.8335 (noisy) to 0.8409 (after mitigation), indicating
that the ML model slightly reduces the impact of noise. As shown in Fig.5.4, the left panel
compares the error distributions before and after mitigation. The mitigated errors (green)
exhibit a narrower distribution centered closer to zero.

The scatter plot in the right panel further supports this conclusion, showing the relationship
between the mitigated predictions and the corresponding ideal values. While some disper-
sion remains—particularly for values near the extremes—the overall alignment along the
diagonal demonstrates that the model captures the dominant trends in the noise-to-ideal
mapping. This is further supported by a strong Pearson correlation coefficient of 0.89
between mitigated and ideal results.

Hardware-aware features, previously introduced in the methodology section play a central

38



(a) Histogram of prediction errors before
(red) and after (green) ML-based error miti-
gation.

(b) Scatter plot comparing mitigated predic-
tions versus ideal values.

Figure 5.4: ML-QEM performance analysis

Table 5.1: Feasures across different patches

Feature Description Patch (0,1) Patch (1,2) Patch (1,3)
T1 of qubit q0 (s) 0.00015 0.00009 0.00009
T2 of qubit q0 (s) 0.00018 0.00016 0.00016
Readout error of q0 0.0342 0.0307 0.0307
T1 of qubit q1 (s) 0.00009 0.00007 0.00006
T2 of qubit q1 (s) 0.00016 0.00009 0.00008
Readout error of q1 0.0307 0.0558 0.0367
CNOT gate error (q0, q1) 0.0111 0.02774 0.01757
CX direction validity 1 1 1

39



role in guiding the model’s learning process. Table5.1 provides a comparison of these
features across the three evaluated 2-qubit patches: (0,1), (1,2), and (1,3). From the table,
we observe that Patch (1,2) has the highest CNOT gate error and readout error among the
three, while Patch (0,1) has the longest coherence times for qubit 0. Patch (1,3), on the
other hand, shows moderate values across most metrics. These physical characteristics
reflect the diversity of noise profiles encountered during training and motivate the use of
patch-specific models to account for such variations.

Rather than assuming uniform behavior across all qubit pairs, our framework tailors the
model to each patch, enabling it to learn localized noise-response patterns. The resulting
R2 scores—0.8600 for Patch (0,1), 0.9186 for Patch (1,2), and 0.9219 for Patch (1,3)—
demonstrate that the model is capable of capturing these feature-conditioned relationships
and achieving accurate prediction within each noise context.

To further evaluate the scalability and generalization of our ML-QEM framework, we con-
ducted two additional simulations targeting different inference regimes. The first test used
2-qubit circuits for both training and evaluation, with circuit depths ranging from 2 to 11.
In this case, the training circuits and test circuits shared the same patch configuration and
noise environment. As shown in Fig.5.5a, the model consistently reduced MSE across
all depths compared to the unmitigated results. Even as circuit depth increased beyond
the training range (e.g., depth 9–11), the model still demonstrated partial transferability,
capturing observable trends in noise-affected measurements.

(a) native 2-qubit circuits aligned with the train-
ing distribution.

(b) patch-wise inference in larger entangled cir-
cuits.

Figure 5.5: Comparison of ML error mitigation MSE across different gate depth:
(a)2-qubit circuits used during training and testing. The regression model is trained on
circuits confined to single 2-qubit patches.
(b) Testing on 4-qubit circuits with ⟨Z0Z1⟩ as the observable of interest. Although the
model is trained only on patch(0,1), interference from patch(1,2) and patch(1,3) introduces
additional noise.
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In the second experiment, we introduced more complex scenarios by testing on 4-qubit cir-
cuits with entangled interactions. Specifically, training was still conducted using circuits
confined to patch (0,1), but the test circuits included additional entanglement from patch
(1,2) and patch (1,3), simulating a more realistic and noisy local environment. This setting
mirrors a common structure in larger superconducting layouts, where localized gates may
still be affected by crosstalk or nearby operations. As seen in Fig.5.5b, although the added
interference degraded overall performance—as expected—the model was still able to re-
duce the MSE on patch (0,1), validating its ability to generalize to entangled subcircuits.

These simulations serve to complement the full 4-qubit ML results presented earlier, where
mitigation improvements were modest. By isolating specific circuit patches and evaluating
their behavior under both clean and entangled conditions, we provide additional evidence
that patch-based ML-QEM can scale with circuit complexity and retain localized effec-
tiveness in larger systems.

Future workmay explore deeper architectures (e.g., graph neural networks), adaptive train-
ing strategies, or integration with hardware calibration data. Additionally, robustness un-
der distributional shift and improved tail performance could be addressed via outlier-aware
objectives or transfer learning, further enhancing themodel’s deployment viability on near-
term quantum devices.

5.5 Comparison and Discussion of QEM Strategies

Next, we will compare the three quantum error mitigation (QEM) strategies by combining
the simulated results discussed before, highlighting their respective strengths, limitations,
and suitability for near-term quantum devices.

ZNE operates by amplifying the existing noise and extrapolating the observed measure-
ments back to the zero-noise limit. On the one hand, our simulation results confirms that
ZNE is effective in reducing MSE and improving fidelity across a range of noise models
and gate types, especially in circuits with limited depth. This makes it a promising tool
for near-term quantum applications that rely on shallow variational or measurement-based
protocols. On the other hand, the method’s performance degrades significantly as circuit
depth increases. This limitation stems from both the intrinsic instability of extrapolation
at large noise amplification factors and the exponential increase in sampling cost (Temme
et al., 2017). In addition, the method assumes a smooth and well-behaved response of
observables to noise amplification, which may not hold under strongly non-Markovian or
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hardware-specific noise interactions.

Probabilistic Error Cancellation (PEC) is theoretically capable of exactly inverting noise
channel and can recover the ideal output by representing noisy operations as linear com-
binations of ideal ones. However, this technique relies on precise knowledge of the noise
model and suffers from an exponentially growing sampling overhead.

To understand this, consider the depolarizing noise channel as an example. When a quan-
tum gate suffers from depolarizing noise of strength p, the noisy operation can be described
as

Edep(φ) = (1− p)UφU † + p · I
2
,

To cancel this noise, PEC constructs the inverse channel:

E−1 =
1

1− p
Edep −

p

3(1− p)
(XφX + Y φY + ZφZ) (31)

While this method can in principle restore the ideal expectation values, it introduces sev-
eral critical challenges. First, PEC demands precise knowledge of the underlying noise
model—typically obtained through full noise tomography, which scales exponentially with
qubit count. For a 20-qubit system, this requires on the order of 420 ≈ 1012 measurements,
posing a significant calibration burden. Second, PEC suffers from a rapidly increasing
sampling cost. In order to cancel out noise, each noisy gate must be probabilistically re-
placed by a mixture of ideal gates with positive and negative weights. This means that a
single run of the original circuit is no longer enough—you need to run many randomized
versions of it and combine their results.Even for modest depolarizing noise levels(p = 0.1)
, the overhead per gate is approximately γ ≈ 1+ 4p

3 = 1.13. For 10 gates per qubit - the to-
tal number of gates is N=200 -, the total sampling overhead becomes γ200 ∼ 1010 ,making
it intractable on medium-scale implementation.

ML-QEMoffers a data-driven alternative that avoids the need for repeated noise amplifica-
tion or explicit noise inversion. In our framework, supervised learning models—trained on
noisy and ideal results of 2-qubit circuits—are used to infer error-mitigated results in larger
4-qubit circuits. This approach is inherently scalable to larger circuits as it does not require
additional quantum resources during inference. Despite this, ourML-QEM framework still
faces limitations in scalability and generality. In contrast to techniques like ZNE, which
can be applied to circuits of varying structure with minimal modification, theMLmodel re-
quires retraining for circuits with different depths or gate compositions. Moreover, while
mitigation accuracy improves, the absolute gain in fidelity remains modest—suggesting
the need for more expressive models or richer features to unlock further benefits.
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CHAPTER 6

CONCLUSION

Quantum error mitigation (QEM) is a critical research direction in the NISQ era, where
hardware limitations preclude the use of full-scale quantum error correction. In this work,
we systematically explored and compared three representativeQEMmethods—Zero-Noise
Extrapolation (ZNE), Probabilistic Error Cancellation (PEC), and machine learning-based
QEM (ML-QEM)—using a combination of theoretical formulation and numerical simula-
tion on realistic noise models.

Our results demonstrate that ZNE can effectively improve measurement accuracy in shal-
low quantum circuits, particularly under single- and mixed-noise models. However, its
effectiveness diminishes significantly with increasing circuit depth or gate count, due to
numerical instability, extrapolation divergence, and the onset of complete decoherence.
While PEC offers a theoretically optimal solution for mitigating Markovian noise, it is
ultimately impractical for medium-scale systems such as our 20-qubit target architecture,
owing toits exponential cost in circuit sampling and calibration—rendering it unsuitable
for circuits beyond a few qubits.

In contrast, our machine learning-based approach—trained on small 2-qubit subcircuits
using random forest models—shows clear improvement when applied to new 4-qubit cir-
cuits. Although the increase in fidelity is modest (from 0.8335 to 0.8409), the method has
several practical advantages. Most importantly, it does not require ideal outputs during
testing, which means it can be used even when simulating large circuits is no longer possi-
ble. This makes our approach more scalable and suitable for future quantum devices where
traditional simulation becomes infeasible. In addition, our model is simple to train, runs
quickly, and does not need detailed noise models or changes to the quantum circuits them-
selves. These features make it easy to use in real-world experiments. While this is only
a basic version of the method, the results already show a measurable benefit, and there is
clear potential for further improvement by using more advanced models or better features.

Recent ML-based error mitigation methods—such as those by Liao and Srushti (Liao et
al., 2024; Patil et al., 2025)—achieve good performance, but often rely on deep learning
models trained on large and complex circuits. These methods usually need either other
error mitigation results (like ZNE) as labels, or customized training for each circuit, which
makes them harder to apply generally. By contrast, our method trains on simple, fully
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simulated small circuits and works directly on new circuits without retraining. This makes
it much easier to scale up and apply in practice.

6.1 Recommendation for Future Work

While our results validate the feasibility of patch-based ML-QEM, several directions re-
main open for future improvement:

Adopt more expressive machine learning models: The current framework uses ran-
dom forests for interpretability and ease of training, but advanced models—such as graph
neural networks (GNNs), transformers, or hybrid physics-informed networks—may cap-
ture more complex noise behaviors and offer better generalization to unseen circuit struc-
tures.

Evaluate scalability beyond 4-qubit circuits: Our modular patch-based method is in-
herently extensible to larger circuits. Future experiments should explore applying the
model to 7-, 10-, or even 20-qubit circuits using the same patch inference strategy, and
evaluate how well mitigation quality holds up.

Combine with existing QEM techniques: Hybrid schemes—e.g., using ML to esti-
mate ZNE fit curves or filter PEC sample weights—may allow combining the best of both
worlds: the interpretability and theoretical guarantees of classical methods, with the adapt-
ability and low overhead of machine learning.

Deploy on real quantum hardware: As the final step toward practical deployment,
future work should test this framework directly on IBM QPUs or similar superconducting
platforms. Since our model does not require ideal outputs at inference time, it is well-suited
for real-device implementation. Nevertheless, a key challenge in real-device deployment is
the lack of ideal reference values, which complicates the assessment of whether mitigation
is truly effective.

Moving forward, the integration of physics-informed machine learning with partial noise
knowledge and device-specific topology offers a promising pathway for robust, hardware-
adaptive error mitigation. As quantum hardware continues to scale, such hybrid strategies
may play a key role in bridging the gap between near-term noisy devices and future fault-
tolerant quantum computation.
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