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ABSTRACT

The Modified Newtonian Dynamics (MOND) offers an alternative to dark matter
hypothesis by proposing a deviation from Newtonian gravity at low accelerations. An
important prediction of MOND is the External Field Effect (EFE), wherein a system's
internal dynamics are influenced by external gravitational fields, even if these fields
are uniform. This project investigates the experimental feasibility of detecting the EFE
under controlled laboratory conditions. Theoretical constraints are derived based on
MOND's critical acceleration scale, ensuring that experimental setups remain within
the MOND regime. A two-body system is modeled and analyzed, accounting for
internal gravitational attraction, air resistance. Both analytical and numerical methods,
including Runge-Kutta simulations, are employed to estimate collision dynamics
under different configurations. In the external field, results show that EFE can be
verified with time measurement of precision. Limitations arising from Earth's rotation
and practical measurement constraints were also considered. This study provides
foundational insights into designing precision laboratory tests for alternative gravity
theories.

Keywords: Dark Matter, Modified Newtonian Dynamics (MOND), External Field
Effect (EFE)



TABLE OF CONTENTS

DECLARATION vl
APPROVAL FOR SUBMISSION...cccccceesscecessesssssssssssssssssssssssssssssssssssssssssssssssssse 11
ACKNOWLEDGEMENTS.....ccececnetcccsntcssncessaseessaseessasesssasesssssessassessassessasssssnsess v
ABSTRACT .....oveiercnnecssanecssnnesssnsesssnsesssssessasssssasesssasesssasesssasesssssessassessasssssasssssnsess %
TABLE OF CONTENTS Vi
LIST OF FIGURES vii
LIST OF TABLES X
LIST OF SYMBOLS X
CHAPTER
1 INErOAUCHION. .. .eiiiieiiieeeciiee ettt e ettt e e e treeeeeetreeeeetreeeeeeetreeeeeennneeaens 1
2 Dark Matter Phenomenon
2.1 Galactic ROtation CUIVE .......uveeeeeerieeeeeieeeeeeireeeeeeneeeeeeereeeeeesareeeeeeannees 3
2.2 GalaXy CIUSLET ....uvviieeeiieeeeeiireeeeeeieeeeeeereeeeeestreeeeeerreeeeeeasreeeeessseeeeeensnnns 4
3 Theory of MOND
3.1 Key Hypotheses 0f MOND ........ouiieeeiiiieeeiieeeeceireeeceereeee e eeenreee e 6
3.2 Modified Newton’s Second LaW ........cceeeeeeirveieeeireeeeeeinieeeeeereeeeeenveeeenn 7
3.3 MOdified GIaVILY ..cccveeecreeecieeeirieeecieeeecrieeecrreeecreeesseeessesesseeesssaessseesnns 8
3.4 Interpolation FUNCHIONS .....cccveeeeveeeeciieeeieeeeeeeeee e iee e e e eveeeeeeee s 12
3.5 The External Field Effect—EFE........ccccceeeiiiiiiiiieeeeieeeeeeeee e, 14
3.6 Successes Of MOND ........oooiiiiiiiceeeeee e 17
2.6.1 Galaxy Rotation CUIVE .........cceeeeurereeeeirreeeeereeeeeeeireeeeeennreeeeenaneens 17
2.6.2 Tully-Fisher Relation........cccccccueeeeieeeiieeeiieeecieeecee e eevee e 18
4 Proposed experiment
4.1 INteTNAl GTAVILY..uveeeerieeerreeeitieeeiteeeeireeesteeesreeeceeeeesraeeesseeeseeesseessssees 22
i N | b 4 (1 5 (0) | PO USRS 24
4.3 Experimental CONAItiONS .........ecceevveeeeeriueeeeesirveeeeerrreeeeesrereeessveseeennns 26
4.4 Rotating Polar Coordinate SYSteM........cccueeeeeevrveeeeerirrereeerreeeeeeiveeeeenns 29
4.5 Rough Trajectory and Collision Time..........ccoevveeeeerirvereeesneeeeeesvereeennns 32
REFERENCES ....cciiintiiniiennnicnsssicnsssiossasisssasssssassssssssssssssssasssssasssssssssssasssssasssssass 37
APPENDICES ....cuiiiiriiinnneicnnnnicssasicssssiossassossasssssasessssssssssssssasssssasssssasssssasssssasssssass 41

vi



LIST OF FIGURES

2.1 Rotation curve of spiral galaxy Messier 33 [8]. The data points of color yellow
and blue with error bars is the observational data of stars’ speed with respect to the
distance from the center of galaxy. The gray dashed line is the theoretically expected
rotation curve based solely on the distribution of visible matter. The solid line
represents the best fit model of observation data. The x-axis is the radial distance from
the galactic center. The origin of x-axis stands for the center of the galaxy............... 4

2.2 X-ray emission and gravitational lensing map of the Bullet Cluster 1E 0657-558.
The green contours in top and bottom graphs are the gravitational lensing results. The
plus symbol in the pannel on top indicates the centers of masses of plasm clouds. White
bars represent distance 0f 200KPC ....ccvvieeiiiieiiiieeie et 5

3.1 Comparison of different p-function profiles as a function of x—the ratio of
acceleration to the characteristic acceleration scale ay. The solid line and dashed line
are the plots of Equation (3.4.11), with n =1 (simple u -function) and n =
2(standard p-function), respectively. Dotted line and dashed-dotted line are curves of
Equation (3.4.13) for m = 0.5 and m =1 respectively. The circular marker line
and starred marker line depicts Equation (3.4.14) with n=4 and n=6
respectively (figure from [16])....ccuiiiiiiiiieiii e 14

3.2 MOND rotation curve fits for representative galaxies from the THINGS survey
[22]. The baryonic mass of selected galaxies varies from 3 x 108Mg to 3 x 10 M,
High-resolution interferometric 21 cm observations are available for the gaseous
components of all galaxies, along with 3.6-micron photometric data to map their stellar
distributions. Black line is calculated from Newtonian baryonic mass model. Blue is
fit curve of MOND. The interpolating function used in the fitting curve is Equation
(3:4.14) WIith 70 = T oot e 20

3.3 The baryonic Tully-Fisher (BTF) relation is analyzed under varying stellar mass-
to-light ratio assumptions, with each column of panels representing a different scaling
approach. In the left column, the scalings follow the maximum disk prescription (I" =
1, 0.5, 0.25, top to bottom). The middle column applies adjustments based on Bell et
al. (2003)’s population synthesis models [23](P =2, 1, 0.5, top to bottom), while the
right column uses mass-to-light ratios from the MDAcc (@ =2, 1, 0.5, top to bottom).
It should be noted that setting I', P, or Q to zero reproduces the gas-only case. To
prevent exceeding the maximum disk limit, galaxies that would otherwise surpass it
under the P or Q scalings are instead plotted at the maximum disk value (denoted
by open symbols). Half of the sample already reaches this constraint by 9 = 2. For
consistency, all panels include a dashed line marking the Q@ =1 fit as a comparative
DASELINE. ... 21
4.1 Schematic of the proposed setup. Two balls are of the same radius and density.

vii



The arrow in the left represents a uniform gravitational field. The two spheres are
placed such that their symmetry axis is parallel with or perpendicular to the
gravitational external field. The effect of external gravity is to pull the two-mass
system downward. Due to the mutual gravitational attraction of the two balls, they will
slowly move toward each other and finally collide. ..........ccoeieriiieiiiiiiiieieee 22

4.2 The displacements of two balls. ........cceecuieriiiiiiinieeiieeeee e 23

4.3 Graph of velocity versus time calculated using Newtonian mechanics. Two
spheres are set to be platinum balls of radius 1cm. The distance between the centers of
tWO Dalls 18 2.0002 CIML..ouviiuiiiiiiiiieiieie ettt sttt 24

4.4 Velocity and Position over time for both internal gravity and air friction cases.
Two balls are set to be platinum balls of radius 1cm. The distance between the centers
of two balls is 2.0002 cm. Air viscosity is 1.81 X 10™° Paxs. Label “Without Air Drag”
refers to the internal Gravity CASE .......ceevvieriieriiieriieeiierie ettt seae e 25

4.5 Magnified View of Fig. 4.4 around t = 8S ......ccceoiiviienieeiiieieeieeeeeeee e 26

4.6 Ratio of gravity to air friction over time and value of gravity over time for air
FTICHION CASE ..cvintititieieeie ettt sttt et nae 26

4.7 Notations used to simplify implications of 10 seconds measurement time. The
black bar situated in the middle of two balls represents the position where two balls
collide. The dashed line is the distance from the edge of one ball to the collision point,
denoted as er —the distance is expressed as the ball's radius multiplied by a

ProportioNality FACLOT .....ccvviiiiiiieeiie e e 28
4.8 Collision time versus € for platinum ball............cocooiiiiniiniiine 29
4.9 Notation used for rotating coordinate SyStem ...........cccecveercuieercieeeniieenireeennennn 30
4.10 Schematic diagram of spiral MOtION ........ccceeevviieiriiiieeiieieeee e 32
4.11 Trajectories of spiral motions with different ratios...........cccccceveeniieicnnienen. 33
4.12 Ratio of internal gravity to Coriolis fOrce........ccevvviiriiieniiienieeeieeeeeeeen 33
4.13  Trajectory of spiral motion with k = 1 X 107 .......cococeuevevviiiereeiiceean 34

viii



LIST OF TABLES

4.1 Maximum radius for balls made of various MaterialS.....ocuvrerrreressseresssesesessens

4.2 Values of € and the associated distance between the surface of two-body
system for the investigated materialS ..........c.ccecveieiiiieiiieecee e

ix



HS o8 8 P <O Q

dp
Mg

Sgrav

Smatter

CMB
WIMPs
DAMA
LIBRA
LUX
MOND
EFE

LIST OF SYMBOLS

Gravitational constant

Mass density

Velocity

Acceleration

Mass

Gravitational potential

Angle from the direction of the external field
Dynamic viscosity

Lagrangian

Critical acceleration, m/s?
Mass of the Sun

Gravitational action

Matter action

External gravitational field

Stellar mass in galaxy

Gaseous mass in galaxy

Stellar mass-to-light ratio of stellar disk

Stellar mass-to-light ratio of bulge

Cosmic Microwave Background

Weakly Interacting Massive Particles

Dark Matter

Large Sodium Iodide Bulk for Rare Processes
Large Underground Xenon

Modified Newtonian Dynamics

External Field Effect



CHAPTER 1

INTRODUCTION

Current astrophysics and cosmology encounter dark matter as one of their most
puzzling scientific mysteries. Swiss astronomer Fritz Zwicky discovered the trouble
in the 1930s by analyzing behavior in the Coma Cluster [1]. The velocity dispersion
results from Zwicky showed that the cluster galaxies maintained motion beyond what
could be explained by gravity of ordinary visible matter and proposed dark matter as
a possible explanation for cluster stability in his 1933 research.

Research studies conducted after provided various observational evidence that
confirms the existence of dark matter. Vera Rubin together with her colleagues
performed crucial observations on galactic rotation curves during the 1970s, which
remains the most important proof of dark matter existence [2]. Today scientists showed
that velocities of stars at the edge of the galaxy did not decrease as stars moved further
from the center. Such unexpected gravitational effects in galactic systems require an
additional gravitational influence, either undetectable matter or modified gravity.
External verification came from CMB temperature fluctuations measurements which
gave precise data points. Research on CMB anisotropy reveals that visible matter
comprises a small percentage of what makes up the universe [3].

There are different theoretical explanations together with possible candidate particles
to explain the origin of dark matter. Interestingly, Weakly Interacting Massive Particles
(WIMPs), among all proposed dark matter candidates, have appealing features. The
properties of WIMPs match weak nuclear interactions and their predicted number
exists in proportions that match the observed density of dark matter in the cosmos.
Some authors investigate the axion as another major candidate. Axion is proposed to
resolve the strong CP problem and potentially serves as dark matter.

Yet, experimental search for dark matter particle has not been successful.
Investigations involving dark matter detection spread across the world and
experiments were conducted during the last few decades through DAMA/LIBRA,
LUX, and XENON. The detection experiments use multiple technological methods to
directly search for signals from dark matter interacting with standard matter. The
DAMA/LIBRA research produced questionable signals yet other groups were unable
to validate these results and scientists could attribute these results to background noise
[4, 5, 6]. In these conditions, modified gravity models gain attention.

Mordehai Milgrom established the MOND (Modified Newtonian Dynamics) theory in
his 1983 paper [7]. According to MOND, the gravitational law needs modification at
low acceleration. The slow decay rate for gravity predicted by MOND at low
acceleration assists scientists in explaining the fast stellar motion in distant galaxy
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peripheries without introducing dark matter particle.

At the same time MOND predicts that gravitational fields around systems affect how
these systems follow MOND modifications. The way MOND behaves depends on both
the strength and orientation of external gravitational fields. This is called the external
field effect. The purpose of this project is to calculate experimental conditions to detect
EFE and hence test MOND in dedicated precision setup.



CHAPTER 2

DARK MATTER PHENOMENON

2.1 Galactic Rotation Curve

The observational results severely disagree with the predictions of classical Newtonian
mechanics based on the distribution of visible matter. This suggests the existence of
extra mass, which is called “dark matter”.

In classic Newtonian Dynamics, the rotational velocity of a star around galaxy center
can be calculated as following:

In central region, assuming the mass density is constant, the mass enclosed by a sphere
of radius r is:

m(r) = mpr? 2.1.1)

In orbital motion of stars, gravity provides the necessary centripetal force:

2
) — 2 (2.12)

r2 T

Substituting Equation (2.1.1) yields:

v(r) = \/Gm—(r) = \/% Gmp X1 (2.1.3)

r
From Equation (2.1.3) we can tell velocity increases linearly with distance:v(r) o r

At the edge of the galaxy, assuming most of the galaxy’s mass (M) is concentrated in
the core, we then can treat the galaxy as a point mass with mass M. The velocity at
large radius is therefore:

v(r) = |= (2.1.4)

T

The rotating velocities of stars at the edge of a galaxy is expected to decrease with the
square root of distance as we can see in Equation (2.1.4). It turns out that the
experimental data does not agree with this expectation as shown in Fig.2.1 .
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Figure 2.1: Rotation curve of spiral galaxy Messier 33 [8]. The data points of color
yellow and blue with error bars is the observational data of stars’ speed with respect to
the distance from the center of galaxy. The gray dashed line is the theoretically
expected rotation curve based solely on the distribution of visible matter. The solid line
represents the best fit model of observation data. The x-axis is the radial distance from
the galactic center. The origin of x-axis stands for the center of the galaxy (figure from

[9D.

The figure demonstrates a comparative assessment of measured rotation curve data
along with theoretical predictions that pertain to Messier 33 (M33) spiral galaxy. The
work of Edvige Corbelli and Paolo Salucci shows that the stellar velocities remain
almost constant—even greater—with increasing radial distance, which is indicative of
additional mass distribution—dark matter [8].

2.2 Galaxy Cluster

Compared to galactic rotation curves, galaxy cluster collisions provide more clear and
direct evidence for dark matter. In their research, Douglas Clowe et al. constructed
gravitational lensing maps of a merging galaxy cluster—the Bullet Cluster 1E 0657-
558. The maps clearly show a spatial separation between the cluster's baryonic
matter—detected through X-ray emissions—and its total mass distribution—
represented by gravitational lensing [10], see Fig. 2.2 .



g"58M42° 36° 30° 24° 18° 12°
Figure 2.2: X-ray emission and gravitational lensing map of the Bullet Cluster 1E
0657-558. The green contours in top and bottom graphs are the gravitational lensing
results. The plus symbol in the pannel on top indicates the centers of masses of plasm
clouds. White bars represent distance of 200kpc (figure from [10]).

The colored regions in Fig 2.2 correspond to X-ray plasma, which is the main
ingredient of visible matter and the dominant baryonic mass component. We see that
the two centers of mass of the merging cluster deviate greatly from the centers of
visible matter—plasma cloud.



CHAPTER 3

THEORY OF MOND

3.1 Key Hypotheses of MOND

The essential idea of Modified Newtonian Dynamics (MOND) is based on two
fundamental hypotheses that differentiate it from classical Newtonian mechanics and
theories that depend on dark matter. These hypotheses were first proposed by
Mordehai Milgrom in 1983[7].

Hypothesis 1: Acceleration scale a,
MOND introduces a critical acceleration scale a, =~ 1.2 X 1071%m/s?, below which
gravitational dynamics deviate from Newtonian predictions. This value is empirically

determined from galaxy rotation curves. In the deep-MOND regime (a < ag), the
effective gravitational force becomes:

F=m-.,ay gy (3.1.1)

where gy = Gm/r? is the Newtonian acceleration.
Hypothesis 2: Interpolation function u(x)
According to MOND theory there exists a continuous shift between classical

Newtonian dynamics and MOND that uses an interpolation function p(x) which
depends on the ratio x = a/a,. The function satisfies:

_(x if x <1 (Deep MOND Regime)
uee) ~ { 1 if x > 1 (Newtonian Regime) (3.12)
Commonly used forms are the so-called “standard” function:
_ X
ulx) = NeFe (3.1.3)
And the “simple” function:
n() = (3.1.4)

This ensures that MOND reduces to Newtonian mechanics at high accelerations (a >
a,) avoiding conflict with Solar System tests [11].
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3.2 Modified Newton’s Second Law
MOND proposes a quantitative departure from Newton’s second law at extremely low

accelerations. One way investigated by Milgrom to achieve that departure is to replace
the standard Newton’s second law F = m-a with [12,13]:

F =m-,u(aio)-a (3.2.1)

where m is the mass of the object, a is the acceleration and a, is the critical
acceleration scale—empirically determined to be 1.2 X 1071%m/s?. This is to be
read that any system (not only gravitational) is subject to modified dynamics.

Now substituting the equation of gravity into Equation. (3.2.1):

GMm:m_M(i)_a:maN (3.2.2)

r2 Qg

where ay is the acceleration calculated in the classical Newtonian dynamics. From
Equation. (3.2.2) we can see that the force itself is the same in both MOND and
classical Newtonian dynamics. However, it can be considered that there is extra factor
in front of mass m. So, the inertial mass which reflects an object’s resistance to
acceleration is now different from gravitational mass which determines the
gravitational force experienced by an object in a gravitational field. Hence, the
approach of revising Newton's second law to account for object motion at very low
accelerations is called “Modified Inertia”.

Taking the standard u(x), Equation (3.2.2) becomes:
a}+ay |ak+4a?

a= . (3.2.3)

In deep MOND regime(ay < ap), Equation (3.2.3) becomes:

a=./apgay

1.e. it reduces back to Equation (3.2.1).

However, modifications to Newton's second law remain controversial. The core issue
stems from violations of fundamental physical principles—such as momentum
conservation. In a two-body system, the interaction forces in Newtonian mechanics is



Gmym,

Fo=— 12
N (xz —x1)2

Therefore, the MOND accelerations for m; and m, are:

.
Fyay
a1 =
my
4
EFyay
az =
\ m;

Then the time derivative of the momentum of the two—body system is:

p = mVy + myv, = myas® + my(—a,®) = |/ Fyag - (\/E - \/m_z)

This causes the system's total momentum to change over time. This non-conservation
for an isolated system is a strong agreement against modified inertia.

3.3 Modified Gravity

The conservation problems were solved in the work by Bekenstein and Milgrom [14]
by introducing modifications for the gravitational force.

Their formalism (called AQUAL for Aquadratic Lagragian):

Sgrav = — [ —= a F('V‘D' )d3 dt (3.3.1)

81G

where @ is the gravitational potential i.e. —V® is the MOND acceleration, and F is
a dimensionless function.

The matter action (coupling to gravity) is:
Smatter = — J pPd3xdt (3.3.2)
where p is the mass density. The total action is therefore:

S = Sgrav t Smatter (3.3.3)

To derive the field equation, we vary the total action with respect to @ and set §S=0.
The variation of the gravitational action is:



o5 = B 6F<|vq)|2>d3xdt
grav 8nG a3

Applying the chain rule:

V|2 (IVO|? 2V0 - V(5)
SF = F' S|—— | =F - ———

2
25 g Qg

Thus

BSorar =~ f ( >ch V(6D)d3xdt
Since

[VO|? V|2 [Vo|?
F' VO V(D) =V"|F' > | VPSP -V - [F’ Vo |6
ag Qo ag
8Sgray can be written as:

S By Y .
e 7 (5

According to Gauss’s Divergence Theorem, we have:

4nc;f [ ( >Vc1>5q>l d3xdt = f 50 <F, (Iv;;)F) Vcb) s

And this term disappears as we assume that §® vanishes at the boundary (r — o).

)VdJSle d3xdt

>VCI>l Sdd3xdt

Hence 6Sgyqp 18

=i o [ (2

The variation of the matter action is:

>V(Dl Sdd3xdt

6Smatter == _fp6q)d3xdt

Thus, the variation of total action is:



6§ = SSgrav + SSmatter

Setting &S = 0, gives:

V|
L [F ( ) Vcb] 5O — pSd = 0 (3.3.4)
Rearranging Equation (3.3.4) yields the modified Poisson equation:
|VD| _
V- [,u (a_o) VCD] = 4nGp (3.3.5)

where u(x) = F'(x?) is the MOND interpolation function that satisfies asymptotic
behavior described as Equation (3.1.2).

In the Newtonian limit (|V®| > a,), u(|V®|/ay) = 1, Equation (3.3.5) becomes:
V2D, = 4nGp (3.3.6)

In MOND regime (|V®| < agy), u(|V®P|/ay) = |VP|/a,, Equation (2.3.5) becomes:
V- (@ Vo) = 4nGp (3.3.7)

Substituting Equation (3.3.6) into Equation (3.3.7) gives:

vo| )
V- VO | = V20,

Qg

Hence

v ('Vq"ve Vo) =0 (3.3.8)

Let u=Vd, — M V®. We know from Equation (3.3.8) that the divergence of u is

zero. So u can be expressed as the curl of a vector A:

u=VxA4 (3.3.9)
Hence
_ 1 Vxu'(r') ;3 ,
Ar) = 41rf—|r—r’| d3r (3.3.10)

10



Thus we can write the multipole expansion of u as:
1 _
u=—r—3(r><B)+0(r ) (3.3.11)

where B = (4m)~! [(V' x u(r")d3r"). In Equation (3.3.11), only the monopole term
is explicitly written, while the higher-order terms of the multipole expansion are
collectively grouped into the remainder of order O(r~3).

Hence

Py = v, — u = Str=B (33.12)

Ao 7"3

Taking the absolute value of Equation (3.3.12):

1
V| = Jao(m G757 (sin 6)°)% (3.3.13)

r

where 6 is the angle between r and B.

Substituting Equation (3.3.13) into Equation (3.3.12):

Vb = @ mertrxB 4 0(r ?) (3.3.14)

T (m2G2+B2(sin 8)2)2

The requirement that V X (V&) = 0 gives B=0. By setting B to zero and substituting
back into Equation (3.3.11), we obtain:

u=0+0@"3)

In the deep-MOND regime (i.e., the low-acceleration limit), when higher-order terms
O(r~3) are neglected, u approximately vanishes. This leads to:

VO V|
VO -Vdy =0- Vo =Voy
Qo Ao
_ /A _mGr -2y —
VCD—T—Z- 1+0(r ) =./9gnao (3.3.15)
(m2G?)2

which are precisely the central equations in the section on Modified Newton’s Second
Law. However, the derivation shows that Equation (3.2.2) is only applicable under
certain low-acceleration conditions, indicating its limited use and that it is not a general
dynamical equation.
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We can also find out that when we get to very large distances from an object of mass
M in a vacuum, the gravitational acceleration levels off to far below a, (enters deep-
MOND regime). In this limit, the isopotentials, will eventually be reaching a spherical
symmetry and the curl field will be reduced to zero. Hence the gravitational potential
is:

®d(r) =,/GMaylInr (r = 00)(3.3.16)

Note that MOND satisfies the Weak Equivalence Principle: All uncharged, freely
falling test particles follow the same trajectories, once an initial position and velocity
have been prescribed [15]. The center-of-mass acceleration of a low-mass system (e.g.,
a globular cluster in the Galactic outskirts) is mass-dependent, not structure-dependent
even if its constituents undergo internal accelerations above a,. Therefore, the
collective motion of the system can still adhere to MOND dynamics, even with internal
Newtonian behavior.

3.4 Interpolating Functions

The MOND framework only requires p(x) to follow the asymptotic behaviours given
by equation (3.1.2) strictly: tending to a unity in the Newtonian regime (x>>1), and
almost equating x in the deep-MOND regime (x<<1). To ensure uniqueness of physical
mapping between g and gy, there is a necessary condition that xp(x) has to be strictly
monotonically increasing, i.e., d[xp(x)]/dx > 0:

ulx) +xu'(x) >0
It can also be written as:

dlnu
dlnx>

Just how the interpolating function is shaped is not completely fixed which led to the
creation of several families of interpolation functions.

First of all, let us note that MOND interpolating function u(x) can also be
represented by another function:

v(y) =1/pu(x) (3.4.1)

Where y = xu(x). In this case, the function yv(y) must increase steadily with
every increase in y

To demonstrate how interpolating functions are transformed, an example is presented
that details the mathematics used to get from u(x) to v(y).
The simple p-function is written as:
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u(x) = = (3.4.4)

1+x

Therefore, vy = x2/(1 + x) and one verifies that
x2—yx—y=0
The root value of x is

yty*+4y
X=—"
2

Since x is the ratio of acceleration to characteristic acceleration a,. It cannot take a
negative value. Hence

_ y+y2+4y

X > (3.4.5)
Then, Equation (3.4.1) and Equation (3.4.5) gives the simple v-function
1+ 1+§
v(y) = . (3.4.6)

We would like to propose a new class interpolating functions, parameterized with a
real number n = 0. This is motivated by the setup aimed at testing EFE. Our function
reads:

() = o (3.4.11)

When n = 1, it is the simple p-function, While, when n = 2 it becomes the
standard p-function. The corresponding v-function is of the form:

14 145 n
lTy] (3.4.12)

Vn(y) =

An example of other families of functions was given in [16]:
1

m
=+ (3.4.13)
-

v (y) =

n/2

vn(y) = (1 - e‘y"/z)_l/n +(1 -y e™ (3.4.14)
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Summing up, we wanted to highlight the range of theoretical choices available in the
interpolating function of MOND. In order to accurately decide its detailed shape, the
data from galaxy rotation curves must be extremely accurate. Still, some uncertainty
in measurements of distance and mass-to-light ratios (or from studies of purely gaseous
galaxies) might be present. Data from today’s solar spacecraft mostly prefer simple
function [17] or interpolation function between n =1 and n =2 in Equation
(3.4.11). Fig. 3.1 visually compares examples of the discussed functions. They all show
alike behaviors in the MONND regime and differ for a/a, > 1.

T T T T T I T
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/
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Figure 3.1: Comparison of different u-function profiles as a function of x—the ratio
of acceleration to the characteristic acceleration scale ay. The solid line and dashed
line are the plots of Equation (3.4.11), with n =1 (simple p-function) and n = 2
(standard p-function), respectively. Dotted line and dashed-dotted line are curves of
Equation (3.4.13) for m = 0.5 and m =1 respectively. The circular marker line
and starred marker line depicts Equation (3.4.14) with n=4 and n=6
respectively (figure from [16]).

3.5 The External Field Effect

While Newtonian dynamics and general relativity ensure that subsystems are not
affected by uniform, homogeneous external fields, MOND proposes that the way
galaxies move is influenced most by the total gravitational acceleration. Essentially,
MOND can be seen when both g and g, accelerations fall under the threshold a,.
For g < ag < g., Newtonian theory is used as normal; and for g < g, < ag, the
gravitational constant in Newtonian dynamics is modified. Whenever g becomes less
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than g,, the gravitational pull always returns to its customary 1/72 law, but with an
angular dependence

The following text will delve into how to derive the specific formulas for calculating
the external field effect, starting from the basic principles of MOND.

Suppose we first have a solution ¢, () to the modified Poisson equation for a large
mass distribution p,.

Now we add a small mass distribution p, to its vicinity. The total gravitational
potential at an arbitrary point P due to these two mass distributions is . We assume
the gravity due to p, is sufficiently weak such that the total gravitational force is a
small perturbation to V®:

Vo = Vo, + Vo (3.5.1)

where ¢ is the gravitational potential of p,

Vo v
Now expand [vo] about M:
1)) 1)
Fol _e_ @ g
o —a aea Vo (3.5.2)

where a, = —V(]ﬁe and a, = Wd)l Neglecting all terms with order of V(p higher

than one since V¢ is weak.

Then, expand the interpolating function about a,./ay:

H (lz_cow) —H (Z_Z " aoae VQD) H (Z_:) - (Z_O) agQe V(p (3.5.3)
Let u, = u (Z—Z) and p, = u' (Z—Z), equation (3.5.3) becomes:

Vo , G =
M(u)=# — Vo (3.5.4)

Ao

From equation (3.5.1) and (3.5.4)

Vo ac
u( )ch (ue He— wp) (Voo + Vo)

Qo

—

— — ’ ae
= UeVpe + UV — e
Aopde

' V(pﬁd)e
Hence

V(u(%) ) V(1 Vo) + V(e Vo) — v(' e V(qu.’)e) (3.5.5)
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Simplifying equation (3.5.5) by using equation (3.3.5)

— — — a —_ =
4G (p + py) = 4GP, + V(1 Vo) =V (ué — V¢V¢e)

0Qe
Hence
4mGp, = V(ueVg) — V (ue ) (3.5.6)
Suppose the external field is uniform along dlrectlon l
@ =~V = a.
Then equation (3.5.6) becomes:
4G p, = V(uVe) + V( 12eh.-Vo ) Y <ye (V(p }hele i Vo n)>(3.5.7)

Now consider p, is a spherically—symmetric distribution. We choose a spherical

coordinate system centered at p,., with A = k along the z-axis.
Then

~

A=cosfF—sinfb =k

Let V be the volume of a ball centered at p,, with radius r:
= = BeGe . = .
4G | prdV = | V{ue| Vo + n-Veoa||dV
v v He Qg

> Hele, = _\)\ .=
4nGM = Ue | Vo + n-Voa||dX
v HUe Ao

where d¥ = r2sin6 dé d¢ 7, here ¢ is the angle in spherical coordinate system.

Then

4TGM
Ue

= [,,7%sin 0 dodpt - Vo

+ZZZ: faVTZ sm@d@dcﬁ(ﬁﬁ)(p)(f-ﬁ) (358)

The solution to equation (3.5.8) 1s [18]:

GM

== UeT~/1+Aes5iN20 (3:5.9)

where pe = u(ye), e = Ve tte/te, e = dp(Ye)/dy. and Yy, = ge/ay. 0 is the
azimuthal angle from the direction of the external field g.. Equation (3.5.9) is similar

to @ = GM/r, except that the gravitational constant in Equation (3.5.9) has been
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modified:Gerr = G/pey/1 + AoSin?0.

3.6 Successes of MOND

3.6.1 Galaxy Rotation Curve

The rotation curve of spiral galaxies can be used as an important test for MOND. If
dark matter is left out, astronomers should be able to use the observable matter to
predict the rotation curve for galaxies.

The visible matter of galaxy can be categorized into three components: Gas Disk,
Stellar Disk and Bulge. The rotational velocities provided by these mass distributions
are:

GMS ars
Vitars(r) = 5= © (3.6.1)

where Mg q,s(7) is the stellar mass within sphere of radius r in the disk of the galaxy,
and

GMgqs(T)
Vjas(r) = —2=— (3.6.2)

Note that the gas component may not be exactly in the shape of a disk. Its 3D mass
distribution may be considered.
The total velocity derived from visible matter is [19]:

VN (T‘) - JlVgaslVgas + Ystars|Vstars|Vstars + Ybullvvullvvul (3.6.3)

where Ygiqrs and Yp,; is the stellar mass-to-light ratios of stellar disk and bulge,
respectively.

Then incorporating Equation (3.6.3), a = V?/r,ay = ViZ/r into Equation (3.2.2)
gives:

U (V—z) ~ = V—’\% (3.6.4)

rag) r r

By applying the simple u function, we have:
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1+ /1+4a0rv,\72
V= VN

. (3.6.5)
By applying Equation (3.4.11), we have:
1/2n
1+ [1+4(ragvy?)"
V="Vy (3.6.6)

2

To fit the observed rotational velocity profile, we perform a least squares optimization
on Equation (3.6.6), treating the mass-to-light ratio as a free parameter that varies
within a physically reasonable range.

Begeman, Broeills and Sanders performed an analysis in 1991 and discovered that the
rotational speed calculated in MOND was close to the actual rotational speed observed
in ten spiral galaxies [20]. In 2012, Benoit Famaey discussed in detail the fitting of
Monte Carlo simulations into the rotation curves of different types of galaxies,
including High Surface Brightness (HSB), Low Surface Brightness (LSB), spiral,
massive and dwarf galaxies [11]. According to Lelli, McGaugh and Schombert,
MOND succeeded in predicting how 175 galaxies rotate, without any need for
adjustable parameters at the low-acceleration area [19]. Figure 2.2 shows the result
from Benoit Famaey.

3.6.2 Tully-Fisher Relation

The Tully-Fisher relation shows that the brightness and rotation velocity of disk
galaxies are related to one another. It was first introduced in 1977 by R. Brent Tully
and J. Richard Fisher [21] and is now widely used for measuring distances between
galaxies as well as in topics related to cosmology. The Tully-Fisher relation is typically
expressed as:

L« V%, (3.6.7)

where L is the total luminosity of the galaxy (often measured in infrared or radio
wavelengths to minimize dust absorption effects), V4, 1s the maximum rotational
velocity of the galaxy's rotation curve (usually derived from neutral hydrogen 21 cm
line or optical spectroscopy), a is an exponent, typically ranging between 3 and 4
(depending on the observational band).

Equation (3.6.7) can be understood in a simple way within the MOND model. The
speed at which a spiral galaxy rotates majorly depends on its gravity which is
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influenced by dark matter and ordinary matter. Also, if galaxies have a relatively
constant mass-to-light ratio (M /L), then their luminosity L increases in proportion to
how much mass they contain. Newtonian mechanics suggests that rotational velocity
Vinax is proportional to the total mass M much like Kepler’s law, where V o /M/R.
The integrated equations give us equation (3.6.7), in which the value of a depends
on the mass distribution and its mass-to-light ratio.

As illustrated in Figure 2.1, the maximum rotational velocity of a spiral galaxy occurs

in regions far from its center. According to Modified Newtonian Dynamics (MOND)),
the acceleration of an object at large distances from a mass M is given by

a=,/apay

For an object in circular motion, the centripetal acceleration is

Combining these relations, we derive the maximum rotational velocity of a spiral
galaxy as follows:

Virax = GMa, (3.6.8)
Hence
Vinax & M (3.6.9)
Then we plug in L < M with the assumption that the mass-to-light ratio (M /L) of a
galaxy is relatively constant.

Lo Mo V* (3.6.10)

This is the Tully-Fisher relation with a = 4.
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Figure 3.2: MOND rotation curve fits for representative galaxies from the THINGS
survey [22]. The baryonic mass of selected galaxies varies from 3 x 108Mg to
3 X 10 M. High-resolution interferometric 21 cm observations are available for the
gaseous components of all galaxies, along with 3.6-micron photometric data to map
their stellar distributions. Black line is calculated from Newtonian baryonic mass
model. Blue is fit curve of MOND. The interpolating function used in the fitting curve
is Equation (3.4.14) with n = 1 (figure from [11]).
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Figure 3.3: The baryonic Tully-Fisher (BTF) relation is analyzed under varying stellar
mass-to-light ratio assumptions, with each column of panels representing a different
scaling approach. In the left column, the scalings follow the maximum disk
prescription (I" =1, 0.5, 0.25, top to bottom). The middle column applies adjustments
based on Bell et al. (2003)’s population synthesis models [23] (P =2, 1, 0.5, top to
bottom), while the right column uses mass-to-light ratios from the MDAcc (@ =2, 1,
0.5, top to bottom). It should be noted that setting I, P, or Q to zero reproduces the
gas-only case. To prevent exceeding the maximum disk limit, galaxies that would
otherwise surpass it under the P or @ scalings are instead plotted at the maximum
disk value (denoted by open symbols). Half of the sample already reaches this
constraint by @ = 2. For consistency, all panels include a dashed line marking the Q
=1 fit as a comparative baseline (figure from [24]).
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CHAPTER 4

PROPOSED EXPERIMENT

The EFE is simplest to check on a two-body system embedded into external field. We
therefore propose a test with two massive spheres with the axis joining their centers
aligned either parallel or orthogonal to the external field, see Fig. 4.1. The parameter
we wish to study for revealing different dynamics is the collision time. Recall that
under Newton’s laws, it is impossible for any such discrepancy to happen. The reason
is that, in Newtonian physics, the gravitational field accelerates the entire system and
both balls the same way without making them move differently relative to one another.
As a result, both of the collisions are predicted to take the same time. The same is
predicted by general relativity. Note that uniform external field is removed in the frame
accelerating downwards with a = g,,. From equivalence between acceleration and
gravity, the two configurations evolve in exactly the same way.

However, as explained in the last section, in the MOND model we expect to see a
difference and we wish to work out how small that difference is.

4.1 Internal Gravity

Ge:l:ternu.l

(b) Orthogonal configuration (a) Parallel configuration

Figure 4.1 Schematic of the proposed setup. Two balls are of the same radius and
density. The arrow in the left represents a uniform gravitational field. The two spheres
are placed such that their symmetry axis is parallel with or perpendicular to the
gravitational external field. The effect of external gravity is to pull the two-mass
system downward. Due to the mutual gravitational attraction of the two balls, they will
slowly move toward each other and finally collide.

Since, according to Blanchet and Novak, the only change in the internal system is the
effective Newton’s constant (if the masses are sufficiently far apart), we start with
computing the Newtonian trajectory for the two spheres.
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From Energy Conservation Law:

Gm Gm
L-2x L

4.1.1)

where x is the displacement of one ball, m is the mass of one ball, L is the initial
distance between two balls and G is the gravitational constant, see Fig. 4.2.

Figure 4.2 The displacements of two balls.

Writing v = dx/dt, Equation (4.1.1) can be written as:

d
ﬁ=—?i?— (4.1.2)
m m
L-2x L
After integrating:
L LvZ tan~ (2
t= E;(x@—2@+ ZQZQ (4.1.3)

Equation (4.1.3) shows the relationship between time t and ball displacement x.
The collision time is found by putting x = % If we take balls of radius 1cm and mass

0.0883kg, separated by distance 2.0002 cm, Fig3.3 shows that they will collide at time
t = 12s, and the maximum speed of the ball is 1.2 nm/s, which is of a very small value.
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Figure 4.3 Graph of velocity versus time calculated using Newtonian mechanics. Two
spheres are set to be platinum balls of radius 1cm. The distance between the centers of
two balls is 2.0002 cm.

4.2 Air Friction

To be more realistic we add air friction to the two balls system. As shown in Fig. 4.3,
the speeds of two balls are very small throughout the collision process. With the
consideration of air drag force, the velocities of two balls will only become smaller
than before. The air friction is written as [25]:

F = énmrv (4.2.1)

where 7 is the dynamic viscosity of air, r is the ball radius and v is the relative velocity.

From Newton's second law:

dv_ Gm?

Fr m - 6T]T[I'V (4.2.2)

However, due to the difficulty of nonlinear ordinary differential equation, we cannot
obtain an analytical solution. One can still calculate the ball displacement and ball
velocity at any given time using numerical methods. In this project 4th Order Runge-
Kutta method is chosen to calculate the ball displacement and ball velocity. For the
detailed code, please refer to the appendix.
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Figure 4.4 Velocity and Position over time for both internal gravity and air friction
cases. Two balls are set to be platinum balls of radius 1cm. The distance between the
centers of two balls is 2.0002 cm. Air viscosity is 1.81 X 10~° Paxs. Label “Without
Air Drag” refers to the internal gravity case.

Fig. 4.4 shows that the motion of two balls under air friction case is almost identical
to their motion under internal gravity only case. By magnifying the image as shown in
Fig. 4.5, one can observe that the motion of two balls shows slight differences under
the two conditions, but they are negligible of gravity to air friction

From the upper panel of Fig. 4.6, one can see that the ratio is greater than two thousand.
As value of time t becomes smaller and smaller, the ratio increases rapidly. In fact, the
reason for the author to plot the ratio from t = 2s is to avoid the influence of extremely
big values from time interval [0s,2s], otherwise the shape of the ratio curve is simply
“L”.
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Figure 4.5 Magnified View of Fig. 4.4 around t = 8s.

The reason for the high similarity of motion of two balls under two conditions is
that internal gravity dominates the collision process of two balls in air friction case.

Ratio of Gravity to Drag Over Time
14000

12000
10000 — AN —
8000 |- _
6000

4000

15 210 2 Gravity Over Time

05

Figure 4.6 Ratio of gravity to air friction over time and value of gravity over time for
air friction case.

4.3 Experimental Conditions

There are two restrictions on the design of proposed experiment:
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1. The internal acceleration of two balls should be within the MOND regime.

2. In order to minimize perturbations from the external environment, we limit
the collision time to ten seconds.

The first constraint reads:

a<ay,=12x10"1"m/s? 4.3.1)

From Newton’s Second Law, (assuming Newtonian mechanics for order of
magnitude estimation):

a= Gm
T (L-2x)2

(4.3.2)

The acceleration has to be smaller than a, throughout collision process, which means
the greatest value of a is smaller than a,. From Equation, one can know that a
increases as x increases. So, a(er) is the maximum value.

Hence

< 12x1071%m/s? (4.3.3)

Substituting the value of G and writing m = §m"3 p for aball:

pr < 1.7kg/m? (4.3.4)

For platinum ball with density 2109 kg/m3, the restriction means that the radius of
balls must be smaller than 0.8mm. Note that gravity from a mm-scale object has
already been detected in the lab [26].

Here is the corresponding radius table for some material with densities around
100kg/m3

Material Density (kg/m3) | Radius (cm)
Expanded Polystyrene (EPS) | 20~50 3.4~8.5
Balsa Wood 160 1

Metal Foam 50~200 0.85~3.4
Silica Aerogel 100 1.7

Table 4.1: Maximum radius for balls made of various materials.
The second constraint means:

L\/it -1 2X
anz (L‘Z")) < 10s (4.3.5)

L

t = —< x(L—2x)+

2Gm
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Gc:};tc'r"rml

Figure 4.7 Notations used to simplify implications of 10 seconds measurement time.
The black bar situated in the middle of two balls represents the position where two
balls collide. The dashed line is the distance from the edge of one ball to the collision
point, denoted as er—the distance is expressed as the ball's radius multiplied by a
proportionality factor.

First, we substitute m = gm‘3p foraballand L = (2 + 2¢€)r into Equation (4.3.5),

see Fig. 4.7 for the notation.
Then, expand arctanx around x = O:

1 1 x2n+1
tan~'x = x —§x3 +§x5 — ek (=D e
Equation (4.3.5) becomes:
3+3€ 2
t = €ETETE 4.3.6
o, (Ve+e+e?) (4.3.6)

From equation (4.3.6), one can see that the collision time is independent of the radius
of the ball. For a given platinum ball, its density is constant, and the collision time
depends solely on €, meaning that the collision time is only related to the distance
between the surfaces of two balls.

As shown in Fig. 4.8, to keep the collision time of two balls around 10 seconds, € has
to be less than 3 X 10™*. We already know that due to the limitation of acceleration,
the radius of platinum balls must be less than 0.8 mm. So, the distance between
surfaces of two platinum balls, denoted as 2er, must be less than 480 nm. This is rather
demanding and means that surface effects have to be carefully considered.
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. Density(kg/ . Distance between
Material 0 Radius(cm) | e(le-7) edges of two
balls(nm)
Expanded

Polystyrene (EPS) 20~50 3.4~8.5 2.8~7 23.8
Balsa Wood 160 1.0625 22.3 23.7
Metal Foam 50~200 0.85~3.4 7~28 23.8
Silica Aerogel 100 1.7 14 23.8

Table 4.2: Values of € and the associated distance between the surface of two-body
system for the investigated materials.

While this study does not systematically examine the correlation between surface
distance between two balls and material density, the results presented in Table 4.2
reveal that the distance shows no density dependence when the initial acceleration and
collision time are fixed.

Everything discussed above regarding experimental conditions falls under the case of
Newtonian mechanics. However, as we discussed in the “Air Friction” section, the
motion of two balls in the air friction scenario is almost identical to the motion in the
internal gravity scenario. So, all the restrictions derived above also apply to the case
of air friction.

Collision Time versus &
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Y 1.84758
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| | 1
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Figure 4.8 Collision time versus € for platinum ball.

4.4 Rotating Polar Coordinate System

The motion of two balls will be observed and recorded by a lab on Earth, which means
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in a rotating reference frame.

For simplicity, we keep the motion of the two balls in two dimensions, i.e. they are
placed on the equator at the beginning, and one is on top of the other (parallel
configuration, see Fig. 4.1(b)).

The Lagrangian of two-ball system in 3D Cartesian coordinate system is:

Gm?

L =-mv? +-mvZ + @.4.1)

2
where 1 is the distance between centers of two balls. In the rotating reference frame,
the Coriolis force, which is always perpendicular to the direction of motion of the
object, will transform the motion of two balls from one-dimensional to two-

dimensional. So, the distance between centers of two balls cannot be simply written as
L—2x.

Figure 4.9 Notation used for rotating coordinate system
The velocity v and distance » in Equation (4.4.1) need to be transformed from the 3D
Cartesian coordinate system into the rotating Cartesian coordinate system. The
velocity of two balls in a rotating coordinate system is [26]:

v= (X=0Y)I" + (Y + 6X)y’ (4.4.2)

where X and Y are coordinates in the rotating coordinate system, and @ is the angular
velocity of the rotating coordinate system, see Fig. 4.9. In our experiment, it is the
angular velocity of earth rotation, denoted as w. Equation (4.4.2) gives the velocity of
an object as observed from the rotating coordinate system, which rotates around its
own origin. However, in a real-life scenario, the object actually rotates around the
center of the Earth. Therefore, the rotation of the origin should be incorporated into
Equation (4.4.2).
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This results in the modified Equation (4.4.2):
v= (X—=0Y—-a)l + (Y + 6X)y’ (4.4.3)

Letter a represents the contribution of the rotation of the origin. The angular velocity
is considered constant because the collision time between the two balls is expected to
be around 10 seconds. The Earth's rotation period is one day which is 86,400 seconds.
Ten seconds is a relatively small-time interval when compared to that number, meaning
the angle by which the Earth rotates in 10 seconds is negligible. Thus, the change in
the direction of the translational velocity of the rotating origin is negligible. Over 10
seconds, the change in the angular velocity of Earth's rotation is also negligible.
Therefore, the translational velocity of the rotating origin, v, = wr, can be treated as
a constant in our discussion, which is denoted by a, where r is the distance between
the observer and the center of the Earth.

The distance between center of two balls as interpreted in rotating coordinate system
is simply written as:

r= X —X2)2+ (Y, — Y,)? (4.4.4)

where X; and Y; are the coordinates of one ball in the rotating coordinate system, X,
and Y, are the coordinate of another ball in the rotating coordinate system.

Substituting Equation (4.4.4) and Equation (4.4.3) into Equation (4.4.1):

1 . . 1 . . .
L= Em(Xf +Y2) + Emmz(xf +Y7) + mo(Y;X; — X;1Y;) — maX; + mawY;

1 . . 1 . . .
+2a% +om(X] + ¥2) + S me? (K5 + Y5) + mo(¥,X; — X;Y;) — maX; + mawy,

Gm?

+
V& —X2)2 + (Y1 — Yy)?

Then transform the coordinates from Cartesian coordinates into polar coordinates:

Xy = ricos@q, Yy =r;singq
X, = ryc0s@,, Y, =r,sing,

Where r; and ¢, are the coordinates of one ball in polar coordinate system, r, and
¢, are the coordinates of another ball in polar coordinate system.

Hence the Lagrangian for two balls system in rotating polar coordinate system is:
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1 1
L= Em(i‘f + r2¢?) + Emwzrf + mwr2@; + mar; (w — ¢4) sin @,

1 1
—mar, cos @; + Em(i‘% + r3¢3) + Emwzrg + mwr3@, + mar,(w — ¢,) sin @,

Gm?

—mar, cos ¢, + > >
\/r1 + 13 — 2ryr; cos(@y — @)

.- d oL oL d oL oL d oL daL d OL oL
Y VI G Gn T on  won, on, * atogs ey @0p,  aw,
shall get the equation of motion for two balls in rotating polar coordinate system. But
there are eight variables in the above four equations, which is 77 1, @1 @, and 7 1,

¢1 @,. So there is no analytical solution, but the system can be simulated numerically.

, We

4.5 Rough Trajectory and Collision Time

When observing the motion of an object in a rotating reference frame, a fictitious force
called the Coriolis force is introduced [26]:

F. = —2mw X v (4.5.1)
where w is the angular velocity of the rotating frame, v is the velocity of the object.
The Coriolis force is always perpendicular to the velocity of the object, hence causing
its trajectory to curve.

Because the gravitational attraction between the two small spheres is mutual,
Mm
F=G U207 (4.5.2)

The values of the accelerations and velocities of the two balls are the same. Hence, the
two balls will collide at the midpoint of the initial positions of the two balls.

Therefore, an observer in the rotating reference frame would see the two balls orbiting
around their midpoint while gradually approaching each other—spiral motion, see Fig.
4.10.

Figure 4.10 Schematic diagram of spiral motion
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The ratio of radial velocity to angular velocity is an important parameter in spiral
motion. It describes how curved the trajectory is. For simplicity, we plot the trajectories
of spiral motions with constant radial, angular velocities and different ratio parameter
k.

16 k=10 18 k=1

1 15 2 25 3 1 15 2 25 3 1 15 2 25 3

Figure 4.11 Trajectories of spiral motions with different ratios.
We can see in Fig. 4.11 that the ratio of radial velocity to angular velocity is crucial.
In our proposed setup, the initial radial and angular velocities of the two balls are

Aradial

zero. So, k = Vpggiat/® = = Gravity/Coriolis force. We need to find

Qangular

out the ratio of internal gravity to Coriolis force, see Fig 4.12.

107 Ratio of Internal Gravity to Coriolis force
T

Ratio

0 2 4 6 8 10 12
Time

Figure 4.12 Ratio of internal gravity to Coriolis force
Reading from Fig 4.12, we know that the ratio is always greater 1 X 107, we can
then plot the trajectory of spiral motion with k = 1 X 107, see figure below.
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16 k=1x10"

2 1 !
25

Figure 4.13 Trajectory of spiral motion with k =1 x 107

The ratio of internal gravity to Coriolis force is extremely high—the effect of
Coriolis force is negligible. It can also be found in Fig. 4.13 that the trajectory is
visually flat. Therefore, although we observe the motion of the two small balls in a
rotating reference frame, i.e. Earth, their trajectories should still be such that they
collide directly with each other without any rotation around the midpoint.

Since we introduced EFE, the quantity we are interested in is the collision time,
especially the difference of collision time between two different setups, see Fig. 4.1.
For the setup that the axis joining centers of two balls is orthogonal to the external
field, two balls will experience mutual gravitational attraction toward each other and
external field that pulls the whole two-body system downward. In the setup that the
axis joining centers of two balls parallels the external field, the small ball at the lower
position will experience an upward mutual gravitational attraction and a downward
external gravitational force, while the small ball at the upper position will experience
a downward mutual attractive force and a downward external gravitational force—the
EFE needs to be taken into account. Hence the dynamics of the two-body system is
different in two setups.

The collision time has already been given in section 4.3 equation (4.3.5) and (4.3.6):

L LV2tan™?! (L Exzx)
= |2m x(L—2x)+ >

3+ 3¢

(\/_+E+62)

Since the EFE can be quantified as the modification to the gravitational constant G.
To calculate the collision time in parallel setup, we need to substitute a modified
gravitational constant Gz :

3+ 3¢ -
ters = /ZG o (Ve+e+e?) = (\/ V1t Aesm20> t
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Hence

At = <1 — \/,ue\/1 + Aesin29> t

where 6 =m/2,g.,=9.8 m/s?, te = U(Ve), Ae = Velte/Ue» He = du(ye)/dye
and y, = g./a,. Letthe interpolating function be the simple p function: p(x) =
x/1+ x.

Assume the collision time t = 10s. Then
At = 3.061106923496482 x 1071? x 10s = 3.061106923496482 x 10~ 1s

The collision time difference between two setups is 30ps. In our setup, although
the external field is Earth's gravitational field g, which is much larger than a,,
we still expect an external field effect to emerge, even if this effect is extremely
weak.

To observe this tiny difference is too challenging. To increase the time difference,
we need to either increase to collision time or use a weaker external field such

that the value of \/ue\/ 1+ A,sin?6 is smaller.
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CHAPTERS

CONCLUSION

This work tries to find ways to experimentally verify the External Field Effect (EFE)
that Modified Newtonian Dynamics (MOND) introduces, MOND is an alternative
model, explaining some dark matter phenomenology. With a streamlined two-body
approach, the study determines the necessary physical and theoretical conditions
needed to observe EFE in a lab. Using analysis and computer simulations, including
Runge-Kutta method, the system of two identical masses moving under each other’s
gravitational pull was studied. The findings give numerical estimates of the predicted
motion and list the conditions needed to stay in the MOND regime.

Two major constraints emerged from the analysis: the internal acceleration must
remain below the MOND critical acceleration scale, and the experimental timescale
should be small to avoid environmental disturbance. These restrictions translate into
strict requirements on material density, object size, and initial separation. For example,
platinum spheres must have radii less than 0.8 mm, and edge separations must be on
the order of hundreds of nanometers, to ensure that the system remains in the MOND
regime for the duration of the collision process.

Future work may expand on this foundation by refining the experimental setup.
Enhancing time resolution through high-precision sensors are essential next steps.
Simulations of exact trajectories of the two-body system under horizontal and vertical
alignment is also important.
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APPENDIX

Code for Figure 3.4 Velocity and Position over time for both internal gravity and air
friction cases

cle; clear;

% ZHKE

G = 6.67430e-11; % 5IJ1%% (n"3 ke'-1 s™-2)

r =0.01; % /NEREAZE (n)
epsi = le—4;
dp = 2.109e4: % 4A%5REE = 2.109e4 (kg/m"3)

m = (4/3)*pi*x(r 3)*dp; % /MEkiE (kg)
L = (2 + 2%epsi)*r; % PIERMEIVIUGEE S ()
eta = 1.81le-5; % TSFE (Pa.s)

% HILHEAF
x0 = 0; % WILEAE ()
v0 = 0: % FIGHIEEE (m/s)

% I ra B E

t0 = 0: % HIEERHE (s)
t end = 1000; % ZETHEHE (s)
h = 0.001: % BFAZEK (s)

N = floor((t end — t0) / h); % %%

% Fliatt

t = t0;
Y drag = [x0; v0]; % REME [x; v]
Y no drag = [x0; v0]; % RERE [x; v]

% FHTidsgER

results drag = zeros(N+1, 3): % ZETSHANES
results no drag = zeros (N+1, 3) ;% AHEZESMH T4 HE
results drag(l, :) = [t, x0, v0];

results no drag(l, :) = [t, x0, vO0];

% VU Runge-Kutta ESEHL (F5 RSB Ay FIANZE 18 22 U RH T PR A% 1)

for n = 1:N
kl drag = h * derivatives(t, Y drag, L, r, m, eta, true); % HETSHN
k2 drag = h * derivatives(t + h/2, Y drag + k1l drag/2, L, r, m, eta, true);
k3 drag = h * derivatives(t + h/2, Y drag + k2 drag/2, L, r, m, eta, true);
k4 drag = h * derivatives(t + h, Y drag + k3 drag, L, r, m, eta, true);

kl no drag = h * derivatives(t, Y no drag, L, r, m, eta, false); % A%E&
iEya}

HE
g
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h * derivatives(t + h/2, Y no drag + kl no drag/2, L, r, m,

k2 no_drag
eta, false):

k3 no drag = h * derivatives(t + h/2, Y no drag + k2 no drag/2, L, r, m,
eta, false):

k4 no drag = h * derivatives(t + h, Y no drag + k3 no drag, L, r, m, eta,
false) ;

% HUHDIRES ) &

Y drag = Y_drag + (1/6) * (kl_drag + 2%k2 drag + 2%k3_drag + k4_drag); %
e V]

Y no drag = Y no drag + (1/6) * (kl no drag + 2%k2 no drag + 2+%k3 no drag
+ k4_no_drag); % AHETSHI

t =1t +h; % FEHNE

RIS S
results drag(n + 1, :) = [t, Y drag(l), Y drag(2)];
results no dragn + 1, :) = [t, Y no drag(l), Y no drag(2)];

% WANME, W x KT L2, FikiHE

if abs(Y drag(1)) > L/2 -t
results drag = results drag(l:n+l, :): % {FEHGRES
results no drag = results no drag(l:n+l, :); % {REHA KL
break; % iBHEH

end

end

% 2

figure;

subplot (2, 1, 1);:

plot (results drag(:, 1), results drag(:, 2), 'b—", ’LineWidth’, 1.5); % i}®&
A SBASTE DL,

hold on;

plot (results no drag(:, 1), results no drag(:, 2), 'r— , ’LineWidth’, 1.5): %
THHAZ RS MG, a6

xlabel C Time (s)’, ’FontSize’, 14):

ylabel C Displacement (m)’, ’FontSize , 14);

titleC Displacement of the Ball Over Time’, ’FontSize , 14);

legend ({" With Air Drag’, ’Without Air Drag’}, 'FontSize’, 12):

grid on;

subplot (2, 1, 2);
plot (results drag(:, 1), results drag(:, 3), 'b—", ’LineWidth’, 1.5); % #EE
K, ZEESREAMEN, EaLk
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hold on;

plot (results no drag(:, 1), results no drag(:, 3), 'r— , ’LineWidth’, 1.5); %
WIEE, AFEESSEEN, 0L

xlabel C Time (s)’, ’FontSize’, 14):

ylabel ( Velocity (m/s)’, ’FontSize’, 14);

title( Velocity of the Ball Over Time’, ’FontSize’, 14);

legend ({" With Air Drag’, ’Without Air Drag’}, 'FontSize’, 12);

grid on;

% PR
function dYdt = derivatives(t, Y, L, r, m, eta, include drag)
G = 6.67430e-11; % 5l /1H%E ("3 kg'~1 s"-2)

x =Y(); % HiE
v =Y(®); % ESE
% THEE

gravity = G * m / (L - 2%x) 2;

% FRYES TGS, THEINEE
if include drag
drag = 6 * pi * eta * r * v / m;
dvdt = gravity — drag; % K PH 150N
else
dvdt

gravity; % ANHRETSES

end
dydt = [v; dvdt]; % 3% [n]58 5 F0nss iE
% 1%

% disp([’ Gravity: ’, num2str(gravity), ', Drag: ’, num2str(drag)]);

end
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