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ABSTRACT 

 

The Modified Newtonian Dynamics (MOND) offers an alternative to dark matter 

hypothesis by proposing a deviation from Newtonian gravity at low accelerations. An 

important prediction of MOND is the External Field Effect (EFE), wherein a system's 

internal dynamics are influenced by external gravitational fields, even if these fields 

are uniform. This project investigates the experimental feasibility of detecting the EFE 

under controlled laboratory conditions. Theoretical constraints are derived based on 

MOND's critical acceleration scale, ensuring that experimental setups remain within 

the MOND regime. A two-body system is modeled and analyzed, accounting for 

internal gravitational attraction, air resistance. Both analytical and numerical methods, 

including Runge-Kutta simulations, are employed to estimate collision dynamics 

under different configurations. In the external field, results show that EFE can be 

verified with time measurement of precision. Limitations arising from Earth's rotation 

and practical measurement constraints were also considered. This study provides 

foundational insights into designing precision laboratory tests for alternative gravity 

theories. 

 

 

Keywords: Dark Matter, Modified Newtonian Dynamics (MOND), External Field 

Effect (EFE) 
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CHAPTER 1 

 

INTRODUCTION 

 

Current astrophysics and cosmology encounter dark matter as one of their most 

puzzling scientific mysteries. Swiss astronomer Fritz Zwicky discovered the trouble 

in the 1930s by analyzing behavior in the Coma Cluster [1]. The velocity dispersion 

results from Zwicky showed that the cluster galaxies maintained motion beyond what 

could be explained by gravity of ordinary visible matter and proposed dark matter as 

a possible explanation for cluster stability in his 1933 research. 

 

Research studies conducted after provided various observational evidence that 

confirms the existence of dark matter. Vera Rubin together with her colleagues 

performed crucial observations on galactic rotation curves during the 1970s, which 

remains the most important proof of dark matter existence [2]. Today scientists showed 

that velocities of stars at the edge of the galaxy did not decrease as stars moved further 

from the center. Such unexpected gravitational effects in galactic systems require an 

additional gravitational influence, either undetectable matter or modified gravity. 

External verification came from CMB temperature fluctuations measurements which 

gave precise data points. Research on CMB anisotropy reveals that visible matter 

comprises a small percentage of what makes up the universe [3]. 

 

There are different theoretical explanations together with possible candidate particles 

to explain the origin of dark matter. Interestingly, Weakly Interacting Massive Particles 

(WIMPs), among all proposed dark matter candidates, have appealing features. The 

properties of WIMPs match weak nuclear interactions and their predicted number 

exists in proportions that match the observed density of dark matter in the cosmos. 

Some authors investigate the axion as another major candidate. Axion is proposed to 

resolve the strong CP problem and potentially serves as dark matter. 

 

Yet, experimental search for dark matter particle has not been successful. 

Investigations involving dark matter detection spread across the world and 

experiments were conducted during the last few decades through DAMA/LIBRA, 

LUX, and XENON. The detection experiments use multiple technological methods to 

directly search for signals from dark matter interacting with standard matter. The 

DAMA/LIBRA research produced questionable signals yet other groups were unable 

to validate these results and scientists could attribute these results to background noise 

[4, 5, 6]. In these conditions, modified gravity models gain attention. 

 

Mordehai Milgrom established the MOND (Modified Newtonian Dynamics) theory in 

his 1983 paper [7]. According to MOND, the gravitational law needs modification at 

low acceleration. The slow decay rate for gravity predicted by MOND at low 

acceleration assists scientists in explaining the fast stellar motion in distant galaxy 
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peripheries without introducing dark matter particle. 

 

At the same time MOND predicts that gravitational fields around systems affect how 

these systems follow MOND modifications. The way MOND behaves depends on both 

the strength and orientation of external gravitational fields. This is called the external 

field effect. The purpose of this project is to calculate experimental conditions to detect 

EFE and hence test MOND in dedicated precision setup. 
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CHAPTER 2 

 

DARK MATTER PHENOMENON 

 

 

2.1 Galactic Rotation Curve 

 

The observational results severely disagree with the predictions of classical Newtonian 

mechanics based on the distribution of visible matter. This suggests the existence of 

extra mass, which is called “dark matter”. 

In classic Newtonian Dynamics, the rotational velocity of a star around galaxy center 

can be calculated as following: 

In central region, assuming the mass density is constant, the mass enclosed by a sphere 

of radius r is: 

 𝑚(𝑟) =
4

3
𝜋𝜌𝑟3 (2.1.1) 

 

In orbital motion of stars, gravity provides the necessary centripetal force: 

 
𝐺𝑚(𝑟)

𝑟2
=

𝑣2

𝑟
 (2.1.2) 

 

Substituting Equation (2.1.1) yields: 

 

 𝑣(𝑟) = √
𝐺𝑚(𝑟)

𝑟
= √

4

3
𝐺𝜋𝜌 × 𝑟 (2.1.3) 

 

From Equation (2.1.3) we can tell velocity increases linearly with distance:𝑣(𝑟) ∝ 𝑟 

 

At the edge of the galaxy, assuming most of the galaxy’s mass (M) is concentrated in 

the core, we then can treat the galaxy as a point mass with mass M. The velocity at 

large radius is therefore: 

 𝑣(𝑟) = √
𝐺𝑀

𝑟
 (2.1.4) 

 

The rotating velocities of stars at the edge of a galaxy is expected to decrease with the 

square root of distance as we can see in Equation (2.1.4). It turns out that the 

experimental data does not agree with this expectation as shown in Fig.2.1 . 
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Figure 2.1: Rotation curve of spiral galaxy Messier 33 [8]. The data points of color 

yellow and blue with error bars is the observational data of stars’ speed with respect to 

the distance from the center of galaxy. The gray dashed line is the theoretically 

expected rotation curve based solely on the distribution of visible matter. The solid line 

represents the best fit model of observation data. The x-axis is the radial distance from 

the galactic center. The origin of x-axis stands for the center of the galaxy (figure from 

[9]). 

 

The figure demonstrates a comparative assessment of measured rotation curve data 

along with theoretical predictions that pertain to Messier 33 (M33) spiral galaxy.  The 

work of Edvige Corbelli and Paolo Salucci shows that the stellar velocities remain 

almost constant—even greater—with increasing radial distance, which is indicative of 

additional mass distribution—dark matter [8]. 

 

2.2 Galaxy Cluster 

 

Compared to galactic rotation curves, galaxy cluster collisions provide more clear and 

direct evidence for dark matter. In their research, Douglas Clowe et al. constructed 

gravitational lensing maps of a merging galaxy cluster—the Bullet Cluster 1E 0657-

558. The maps clearly show a spatial separation between the cluster's baryonic 

matter—detected through X-ray emissions—and its total mass distribution—

represented by gravitational lensing [10], see Fig. 2.2 .  
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Figure 2.2: X-ray emission and gravitational lensing map of the Bullet Cluster 1E 

0657-558. The green contours in top and bottom graphs are the gravitational lensing 

results. The plus symbol in the pannel on top indicates the centers of masses of plasm 

clouds. White bars represent distance of 200kpc (figure from [10]). 

 

The colored regions in Fig 2.2 correspond to X-ray plasma, which is the main 

ingredient of visible matter and the dominant baryonic mass component. We see that 

the two centers of mass of the merging cluster deviate greatly from the centers of 

visible matter—plasma cloud. 
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CHAPTER 3 

 

THEORY OF MOND 

 

3.1 Key Hypotheses of MOND 

 

The essential idea of Modified Newtonian Dynamics (MOND) is based on two 

fundamental hypotheses that differentiate it from classical Newtonian mechanics and 

theories that depend on dark matter. These hypotheses were first proposed by 

Mordehai Milgrom in 1983[7]. 

 

Hypothesis 1: Acceleration scale 𝑎0 

 

MOND introduces a critical acceleration scale 𝑎0 ≈ 1.2 × 10
−10𝑚 𝑠2⁄ , below which 

gravitational dynamics deviate from Newtonian predictions. This value is empirically 

determined from galaxy rotation curves. In the deep-MOND regime (𝑎 ≪ 𝑎0) , the 

effective gravitational force becomes: 

 

 𝐹 ≈ 𝑚 ∙ √𝑎0 ∙ 𝑔𝑁 (3.1.1) 

 

where 𝑔𝑁 = 𝐺𝑚 𝑟2⁄  is the Newtonian acceleration. 

 

Hypothesis 2: Interpolation function 𝜇(𝑥) 

 

According to MOND theory there exists a continuous shift between classical 

Newtonian dynamics and MOND that uses an interpolation function 𝜇(𝑥)  which 

depends on the ratio 𝑥 = 𝑎 𝑎0⁄ . The function satisfies: 

 

 𝜇(𝑥) ≈ {
𝑥  𝑖𝑓 𝑥 ≪ 1  (𝐷𝑒𝑒𝑝 𝑀𝑂𝑁𝐷 𝑅𝑒𝑔𝑖𝑚𝑒)         
1  𝑖𝑓 𝑥 ≫ 1  (𝑁𝑒𝑤𝑡𝑜𝑛𝑖𝑎𝑛 𝑅𝑒𝑔𝑖𝑚𝑒)

 (3.1.2) 

 

Commonly used forms are the so-called “standard” function: 

 

 𝜇(𝑥) =
𝑥

√1+𝑥2
 (3.1.3) 

And the “simple” function: 

 𝜇(𝑥) =
𝑥

1+𝑥
 (3.1.4) 

This ensures that MOND reduces to Newtonian mechanics at high accelerations (𝑎 ≫

𝑎0) avoiding conflict with Solar System tests [11]. 
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3.2 Modified Newton’s Second Law 

 

MOND proposes a quantitative departure from Newton’s second law at extremely low 

accelerations. One way investigated by Milgrom to achieve that departure is to replace 

the standard Newton’s second law 𝐹 = 𝑚 ∙ 𝑎 with [12,13]: 

 

 𝐹 = 𝑚 ∙ 𝜇 (
𝑎

𝑎0
) ∙ 𝑎 (3.2.1) 

 

where m is the mass of the object, a is the acceleration and 𝑎0  is the critical 

acceleration scale—empirically determined to be 1.2 × 10−10𝑚 𝑠2⁄  . This is to be 

read that any system (not only gravitational) is subject to modified dynamics. 

 

Now substituting the equation of gravity into Equation. (3.2.1): 

 

 
𝐺𝑀𝑚

𝑟2
= 𝑚 ∙ 𝜇 (

𝑎

𝑎0
) ∙ 𝑎 = 𝑚𝑎𝑁 (3.2.2) 

 

where 𝑎𝑁 is the acceleration calculated in the classical Newtonian dynamics. From 

Equation. (3.2.2) we can see that the force itself is the same in both MOND and 

classical Newtonian dynamics. However, it can be considered that there is extra factor 

in front of mass m. So, the inertial mass which reflects an object’s resistance to 

acceleration is now different from gravitational mass which determines the 

gravitational force experienced by an object in a gravitational field. Hence, the 

approach of revising Newton's second law to account for object motion at very low 

accelerations is called “Modified Inertia”. 

 

Taking the standard 𝜇(𝑥), Equation (3.2.2) becomes: 

 

 𝑎 = √
𝑎𝑁
2+𝑎𝑁√𝑎𝑁

2 +4𝑎0
2

2
 (3.2.3) 

 

In deep MOND regime(𝑎𝑁 ≪ 𝑎0), Equation (3.2.3) becomes: 

 

𝑎 = √𝑎0𝑎𝑁 

i.e. it reduces back to Equation (3.2.1). 

 

However, modifications to Newton's second law remain controversial. The core issue 

stems from violations of fundamental physical principles—such as momentum 

conservation. In a two-body system, the interaction forces in Newtonian mechanics is 
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𝐹𝑁 =
𝐺𝑚1𝑚2

(𝑥2 − 𝑥1)2
 

 

Therefore, the MOND accelerations for 𝑚1 and 𝑚2 are: 

{
 
 

 
 
𝑎1 = √

𝐹𝑁𝑎0
𝑚1

𝑎2 = √
𝐹𝑁𝑎0
𝑚2

 

Then the time derivative of the momentum of the two—body system is: 

 

𝑝̇ = 𝑚1𝑣̇1 +𝑚2𝑣̇2 = 𝑚1𝑎1𝑥̂ + 𝑚2(−𝑎2𝑥̂) = √𝐹𝑁𝑎0 ∙ (√𝑚1 −√𝑚2) 

 

This causes the system's total momentum to change over time. This non-conservation 

for an isolated system is a strong agreement against modified inertia. 

 

3.3 Modified Gravity 

 

The conservation problems were solved in the work by Bekenstein and Milgrom [14] 

by introducing modifications for the gravitational force. 

 

Their formalism (called AQUAL for Aquadratic Lagragian): 

 

 𝑆𝑔𝑟𝑎𝑣 = −∫
𝑎0
2

8𝜋𝐺
𝐹 (

|∇Φ|2

𝑎0
2 ) 𝑑

3𝑥𝑑𝑡 (3.3.1) 

 

where Φ is the gravitational potential i.e. −∇Φ is the MOND acceleration, and F is 

a dimensionless function. 

 

The matter action (coupling to gravity) is: 

 

 𝑆𝑚𝑎𝑡𝑡𝑒𝑟 = −∫𝜌Φ𝑑3𝑥𝑑𝑡 (3.3.2) 

 

where 𝜌 is the mass density. The total action is therefore: 

 

 𝑆 = 𝑆𝑔𝑟𝑎𝑣 + 𝑆𝑚𝑎𝑡𝑡𝑒𝑟 (3.3.3) 

 

To derive the field equation, we vary the total action with respect to Φ and set 𝛿S=0. 

The variation of the gravitational action is: 

 



 

9 

 

𝛿𝑆𝑔𝑟𝑎𝑣 = −
𝑎0
2

8𝜋𝐺
∫𝛿𝐹 (

|∇Φ|2

𝑎0
2 )𝑑3𝑥𝑑𝑡 

 

Applying the chain rule: 

 

𝛿𝐹 = 𝐹′ (
|∇Φ|2

𝑎0
2 ) ∙ 𝛿 (

|∇Φ|2

𝑎0
2 ) = 𝐹′ ∙

2∇Φ ∙ ∇(𝛿Φ)

𝑎0
2  

Thus 

𝛿𝑆𝑔𝑟𝑎𝑣 = −
1

4𝜋𝐺
∫𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ ∙ ∇(𝛿Φ)𝑑3𝑥𝑑𝑡 

Since 

𝐹′ (
|∇Φ|2

𝑎0
2 )∇Φ ∙ ∇(𝛿Φ) = ∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ𝛿Φ] − ∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ] 𝛿Φ 

 

𝛿𝑆𝑔𝑟𝑎𝑣 can be written as: 

𝛿𝑆𝑔𝑟𝑎𝑣 = −
1

4𝜋𝐺
∫∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ𝛿Φ]𝑑3𝑥𝑑𝑡                                                

+
1

4𝜋𝐺
∫∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ]𝛿Φ𝑑3𝑥𝑑𝑡 

According to Gauss’s Divergence Theorem, we have: 

 

1

4𝜋𝐺
∫∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ𝛿Φ]𝑑3𝑥𝑑𝑡 = ∮𝛿Φ(𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ) ∙ 𝑑𝑺 

And this term disappears as we assume that 𝛿Φ vanishes at the boundary (𝑟 → ∞). 

 

Hence 𝛿𝑆𝑔𝑟𝑎𝑣 is 

𝛿𝑆𝑔𝑟𝑎𝑣 =
1

4𝜋𝐺
∫∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 )∇Φ]𝛿Φ𝑑3𝑥𝑑𝑡 

 

The variation of the matter action is: 

 

𝛿𝑆𝑚𝑎𝑡𝑡𝑒𝑟 = −∫𝜌𝛿Φ𝑑3𝑥𝑑𝑡 

 

 

Thus, the variation of total action is: 
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𝛿𝑆 = 𝛿𝑆𝑔𝑟𝑎𝑣 + 𝛿𝑆𝑚𝑎𝑡𝑡𝑒𝑟 

 

Setting 𝛿𝑆 = 0, gives: 

 

 
1

4𝜋𝐺
∇ ∙ [𝐹′ (

|∇Φ|2

𝑎0
2 ) ∇Φ]𝛿Φ − 𝜌𝛿Φ = 0 (3.3.4) 

 

Rearranging Equation (3.3.4) yields the modified Poisson equation: 

 

 ∇ ∙ [𝜇 (
|∇Φ|

𝑎0
)∇Φ] = 4𝜋𝐺𝜌 (3.3.5) 

 

where 𝜇(𝑥) = 𝐹′(𝑥2) is the MOND interpolation function that satisfies asymptotic 

behavior described as Equation (3.1.2). 

 

In the Newtonian limit (|∇Φ| ≫ 𝑎0), 𝜇(|∇Φ| 𝑎0⁄ ) ≈ 1, Equation (3.3.5) becomes: 

 

 ∇2Φ𝑁 = 4𝜋𝐺𝜌 (3.3.6) 

 

In MOND regime (|∇Φ| ≪ 𝑎0), 𝜇(|∇Φ| 𝑎0⁄ ) ≈ |∇Φ| 𝑎0⁄ , Equation (2.3.5) becomes: 

 

 ∇ ∙ (
|∇Φ|

𝑎0
∇Φ) = 4𝜋𝐺𝜌 (3.3.7) 

 

Substituting Equation (3.3.6) into Equation (3.3.7) gives: 

 

∇ ∙ (
|∇Φ|

𝑎0
∇Φ) = ∇2Φ𝑁 

 

Hence 

 ∇ ∙ (
|∇Φ|

𝑎0
∇Φ − ∇Φ𝑁) = 0 (3.3.8) 

 

Let 𝒖 = ∇Φ𝑁 −
|∇Φ|

𝑎0
∇Φ. We know from Equation (3.3.8) that the divergence of 𝒖 is 

zero. So 𝒖 can be expressed as the curl of a vector 𝑨: 

 

 𝒖 = ∇ × 𝑨 (3.3.9) 

 

Hence 

 𝑨(𝒓) =
1

4𝜋
∫
∇′×𝒖′(𝒓′)

|𝒓−𝒓′|
𝑑3𝑟′ (3.3.10) 
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Thus we can write the multipole expansion of 𝒖 as: 

 

 𝒖 = −
1

𝑟3
(𝒓 × 𝑩) + O(𝑟−2) (3.3.11) 

 

where 𝐵 = (4𝜋)−1 ∫(∇′ × 𝒖(𝒓′)𝑑3𝑟′). In Equation (3.3.11), only the monopole term 

is explicitly written, while the higher-order terms of the multipole expansion are 

collectively grouped into the remainder of order O(𝑟−3). 

 

Hence 

 
|∇Φ|

𝑎0
∇Φ = ∇Φ𝑁 − 𝒖 =

𝐺𝑚𝒓+𝒓×𝑩

𝑟𝟑
 (3.3.12) 

 

Taking the absolute value of Equation (3.3.12): 

 

 |∇Φ| =
√𝑎0(𝑚

2𝐺2+𝐵2(sin𝜃)2)
1
4

𝑟
 (3.3.13) 

 

where 𝜃 is the angle between r and B. 

 

Substituting Equation (3.3.13) into Equation (3.3.12): 

 ∇Φ =
√𝑎0

𝑟2
∙

𝑚𝐺𝒓+𝒓×𝑩

(𝑚2𝐺2+𝐵2(sin𝜃)2)
1
4

+ 𝑂(𝑟−2) (3.3.14) 

The requirement that ∇ × (∇Φ) = 0 gives B = 0. By setting B to zero and substituting 

back into Equation (3.3.11), we obtain: 

 

𝑢 = 0 + 𝑂(𝑟−3) 

 

In the deep-MOND regime (i.e., the low-acceleration limit), when higher-order terms 

𝑂(𝑟−3) are neglected, 𝑢 approximately vanishes. This leads to: 

 

|∇Φ|

𝑎0
∇Φ− ∇Φ𝑁 = 0 →

|∇Φ|

𝑎0
∇Φ = ∇Φ𝑁 

 ∇Φ =
√𝑎0

𝑟2
∙

𝑚𝐺𝒓

(𝑚2𝐺2)
1
4

+ 𝑂(𝑟−2) = √𝑔𝑁𝑎0 (3.3.15) 

 

which are precisely the central equations in the section on Modified Newton’s Second 

Law. However, the derivation shows that Equation (3.2.2) is only applicable under 

certain low-acceleration conditions, indicating its limited use and that it is not a general 

dynamical equation. 
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We can also find out that when we get to very large distances from an object of mass 

M in a vacuum, the gravitational acceleration levels off to far below 𝑎0 (enters deep-

MOND regime). In this limit, the isopotentials, will eventually be reaching a spherical 

symmetry and the curl field will be reduced to zero. Hence the gravitational potential 

is: 

 Φ(𝑟) = √𝐺𝑀𝑎0 ln 𝑟 (𝑟 → ∞)(3.3.16) 

 

Note that MOND satisfies the Weak Equivalence Principle: All uncharged, freely 

falling test particles follow the same trajectories, once an initial position and velocity 

have been prescribed [15]. The center-of-mass acceleration of a low-mass system (e.g., 

a globular cluster in the Galactic outskirts) is mass-dependent, not structure-dependent 

even if its constituents undergo internal accelerations above 𝑎0 . Therefore, the 

collective motion of the system can still adhere to MOND dynamics, even with internal 

Newtonian behavior. 

 

3.4 Interpolating Functions 

 

The MOND framework only requires µ(x) to follow the asymptotic behaviours given 

by equation (3.1.2) strictly: tending to a unity in the Newtonian regime (x≫1), and 

almost equating x in the deep-MOND regime (x≪1). To ensure uniqueness of physical 

mapping between g and 𝑔𝑁, there is a necessary condition that xµ(x) has to be strictly 

monotonically increasing, i.e., 𝑑[𝑥µ(𝑥)]/𝑑𝑥 > 0: 

 

𝜇(𝑥) + 𝑥𝜇′(𝑥) > 0 

 

It can also be written as: 

 

𝑑 ln 𝜇

𝑑 ln 𝑥
> −1 

 

Just how the interpolating function is shaped is not completely fixed which led to the 

creation of several families of interpolation functions. 

 

First of all, let us note that MOND interpolating function 𝜇(𝑥)  can also be 

represented by another function: 

 𝜈(𝑦) = 1 𝜇(𝑥)⁄  (3.4.1) 

 

Where 𝑦 = 𝑥𝜇(𝑥). In this case, the function 𝑦𝜈(𝑦) must increase steadily with 

every increase in 𝑦 

 

To demonstrate how interpolating functions are transformed, an example is presented 

that details the mathematics used to get from 𝜇(𝑥) to 𝜈(𝑦). 

The simple 𝜇-function is written as: 
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 𝜇(𝑥) =
𝑥

1+𝑥
 (3.4.4) 

 

Therefore, 𝑦 = 𝑥2 (1 + 𝑥)⁄  and one verifies that 

 

𝑥2 − 𝑦𝑥 − 𝑦 = 0 

 

The root value of x is 

 

𝑥 =
𝑦 ± √𝑦2 + 4𝑦

2
 

Since 𝑥 is the ratio of acceleration to characteristic acceleration 𝑎0. It cannot take a 

negative value. Hence 

 

 𝑥 =
𝑦+√𝑦2+4𝑦

2
 (3.4.5) 

 

Then, Equation (3.4.1) and Equation (3.4.5) gives the simple 𝜈-function 

 

 𝜈(𝑦) =
1+√1+

4

𝑦

2
 (3.4.6) 

 

We would like to propose a new class interpolating functions, parameterized with a 

real number 𝑛 ≥ 0. This is motivated by the setup aimed at testing EFE. Our function 

reads: 

 𝜇𝑛(𝑥) =
𝑥

(1+𝑥𝑛)1 𝑛⁄
 (3.4.11) 

 

When 𝑛 =  1 , it is the simple 𝜇 -function, While, when 𝑛 =  2  it becomes the 

standard 𝜇-function. The corresponding 𝜈-function is of the form: 

 

 𝜈𝑛(𝑦) = [
1+√1+

4

𝑦𝑛

2
]

1

𝑛

 (3.4.12) 

 

An example of other families of functions was given in [16]: 

 𝜈𝑚(𝑦) =
1

√1−
1

𝑒𝑦

+
𝑚

𝑒𝑦
 (3.4.13) 

 𝜈𝑛(𝑦) = (1 − 𝑒
−𝑦𝑛 2⁄

)
−1 𝑛⁄

+ (1 − 𝛾−1)𝑒−𝑦
𝑛 2⁄

 (3.4.14) 
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Summing up, we wanted to highlight the range of theoretical choices available in the 

interpolating function of MOND. In order to accurately decide its detailed shape, the 

data from galaxy rotation curves must be extremely accurate. Still, some uncertainty 

in measurements of distance and mass-to-light ratios (or from studies of purely gaseous 

galaxies) might be present. Data from today’s solar spacecraft mostly prefer simple 

function [17] or interpolation function between 𝑛 = 1  and 𝑛 = 2  in Equation 

(3.4.11). Fig. 3.1 visually compares examples of the discussed functions. They all show 

alike behaviors in the MONND regime and differ for 𝑎 𝑎0⁄ > 1. 

Figure 3.1: Comparison of different 𝜇-function profiles as a function of x—the ratio 

of acceleration to the characteristic acceleration scale 𝑎0. The solid line and dashed 

line are the plots of Equation (3.4.11), with 𝑛 = 1 (simple 𝜇-function) and 𝑛 = 2 

(standard 𝜇-function), respectively. Dotted line and dashed-dotted line are curves of 

Equation (3.4.13) for 𝑚 = 0.5  and 𝑚 = 1  respectively. The circular marker line 

and starred marker line depicts Equation (3.4.14) with 𝑛 = 4  and 𝑛 = 6 

respectively (figure from [16]). 

 

3.5 The External Field Effect 

 

While Newtonian dynamics and general relativity ensure that subsystems are not 

affected by uniform, homogeneous external fields, MOND proposes that the way 

galaxies move is influenced most by the total gravitational acceleration. Essentially, 

MOND can be seen when both 𝑔 and 𝑔𝑒 accelerations fall under the threshold 𝑎0. 

For 𝑔 < 𝑎0 < 𝑔𝑒, Newtonian theory is used as normal; and for 𝑔 < 𝑔𝑒 < 𝑎0, the 

gravitational constant in Newtonian dynamics is modified. Whenever 𝑔 becomes less 
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than 𝑔𝑒, the gravitational pull always returns to its customary 1 𝑟2⁄  law, but with an 

angular dependence 

 

The following text will delve into how to derive the specific formulas for calculating 

the external field effect, starting from the basic principles of MOND. 

 

Suppose we first have a solution 𝜙𝑒(𝑟) to the modified Poisson equation for a large 

mass distribution ρ𝑒. 

 

Now we add a small mass distribution ρ𝑟  to its vicinity. The total gravitational 

potential at an arbitrary point P due to these two mass distributions is Φ. We assume 

the gravity due to 𝜌𝑟 is sufficiently weak such that the total gravitational force is a 

small perturbation to ∇Φ: 

 ∇⃗⃗⃗Φ =  ∇⃗⃗⃗𝜙𝑒  +  ∇⃗⃗⃗𝜑 (3.5.1) 

where 𝜑 is the gravitational potential of 𝜌𝑟 

 

Now expand 
|∇⃗⃗⃗Φ|

𝑎0
 about 

|∇⃗⃗⃗𝜙𝑒|

𝑎0
: 

 
|∇⃗⃗⃗Φ|

𝑎0
=

𝑎𝑒

𝑎0
−

𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑 (3.5.2) 

where 𝑎𝑒⃗⃗⃗⃗⃗ = −∇⃗⃗⃗𝜙𝑒  and 𝑎𝑒 = |∇⃗⃗⃗Φ| . Neglecting all terms with order of ∇⃗⃗⃗𝜑  higher 

than one since ∇⃗⃗⃗𝜑 is weak. 

 

Then, expand the interpolating function about 𝑎𝑒 𝑎0⁄ : 

 𝜇 (
|∇⃗⃗⃗Φ|

𝑎0
) = 𝜇 (

𝑎𝑒

𝑎0
−

𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑) = 𝜇 (

𝑎𝑒

𝑎0
) − 𝜇′ (

𝑎𝑒

𝑎0
)

𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑 (3.5.3) 

 

Let 𝜇𝑒 = 𝜇 (
𝑎𝑒

𝑎0
) and 𝜇𝑒

′ = 𝜇′ (
𝑎𝑒

𝑎0
), equation (3.5.3) becomes: 

 𝜇 (
|∇⃗⃗⃗Φ|

𝑎0
) = 𝜇𝑒 − 𝜇𝑒

′ 𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑 (3.5.4) 

 

From equation (3.5.1) and (3.5.4) 

𝜇 (
|∇⃗⃗⃗Φ|

𝑎0
) ∇⃗⃗⃗Φ = (𝜇𝑒 − 𝜇𝑒

′
𝑎𝑒⃗⃗⃗⃗⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑) (∇⃗⃗⃗𝜙𝑒  +  ∇⃗⃗⃗𝜑)

= 𝜇𝑒 ∇⃗⃗⃗𝜙𝑒 + 𝜇𝑒 ∇⃗⃗⃗𝜑 − 𝜇𝑒
′
𝑎𝑒⃗⃗⃗⃗⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑∇⃗⃗⃗𝜙𝑒 

Hence 

 ∇⃗⃗⃗ (𝜇 (
|∇⃗⃗⃗Φ|

𝑎0
) ∇⃗⃗⃗Φ) = ∇⃗⃗⃗(𝜇𝑒 ∇⃗⃗⃗𝜙𝑒) + ∇⃗⃗⃗(𝜇𝑒 ∇⃗⃗⃗𝜑) − ∇⃗⃗⃗ (𝜇𝑒

′ 𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑∇⃗⃗⃗𝜙𝑒) (3.5.5) 
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Simplifying equation (3.5.5) by using equation (3.3.5) 

4𝜋𝐺(𝜌𝑒 + 𝜌𝑟) = 4𝜋𝐺𝜌𝑒 + ∇⃗⃗⃗(𝜇𝑒 ∇⃗⃗⃗𝜑) − ∇⃗⃗⃗ (𝜇𝑒
′
𝑎𝑒⃗⃗⃗⃗⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑∇⃗⃗⃗𝜙𝑒) 

Hence 

 4𝜋𝐺𝜌𝑟 = ∇⃗⃗⃗(𝜇𝑒 ∇⃗⃗⃗𝜑) − ∇⃗⃗⃗ (𝜇𝑒
′ 𝑎𝑒⃗⃗ ⃗⃗ ⃗

𝑎0𝑎𝑒
∙ ∇⃗⃗⃗𝜑∇⃗⃗⃗𝜙𝑒) (3.5.6) 

Suppose the external field is uniform along direction 𝑛̂ 

𝑎𝑒⃗⃗⃗⃗⃗ = −∇⃗⃗⃗𝜙𝑒 = 𝑎𝑒𝑛̂ 

Then equation (3.5.6) becomes: 

 4𝜋𝐺𝜌𝑟 = ∇⃗⃗⃗(𝜇𝑒 ∇⃗⃗⃗𝜑) + ∇⃗⃗⃗ (𝜇𝑒
′ 𝑎𝑒

𝑎0
𝑛̂ ∙ ∇⃗⃗⃗𝜑 𝑛̂) = ∇⃗⃗⃗ (𝜇𝑒 (∇⃗⃗⃗𝜑 +

𝜇𝑒
′  𝑎𝑒

𝜇𝑒 𝑎0
𝑛̂ ∙ ∇⃗⃗⃗𝜑 𝑛̂))(3.5.7) 

 

Now consider 𝜌𝑟  is a spherically—symmetric distribution. We choose a spherical 

coordinate system centered at 𝜌𝑟, with 𝑛̂ = 𝑘̂ along the z-axis.  

Then 

𝑛̂ = cos 𝜃 𝑟̂ − sin 𝜃 𝜃 = 𝑘̂ 

 

Let V be the volume of a ball centered at 𝜌𝑟 with radius r: 

4𝜋𝐺 ∫𝜌𝑟

 

𝑉

𝑑𝑉 = ∫ ∇⃗⃗⃗ (𝜇𝑒 (∇⃗⃗⃗𝜑 +
𝜇𝑒
′  𝑎𝑒
𝜇𝑒 𝑎0

𝑛̂ ∙ ∇⃗⃗⃗𝜑 𝑛̂))
 

𝑉

𝑑𝑉 

4𝜋𝐺𝑀 = ∫ (𝜇𝑒 (∇⃗⃗⃗𝜑 +
𝜇𝑒
′  𝑎𝑒
𝜇𝑒 𝑎0

𝑛̂ ∙ ∇⃗⃗⃗𝜑 𝑛̂))
 

𝜕𝑉

𝑑Σ⃗⃗ 

where 𝑑Σ⃗⃗ = 𝑟2 sin 𝜃 𝑑𝜃 𝑑𝜙 𝑟̂, here 𝜙 is the angle in spherical coordinate system. 

 

Then 

 
4𝜋𝐺𝑀

𝜇𝑒
= ∫ 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙𝑟̂ ∙

 

𝜕𝑉
∇⃗⃗⃗𝜑 

                                                              +
𝜇𝑒
′  𝑎𝑒

𝜇𝑒 𝑎0
∫ 𝑟2 sin 𝜃 𝑑𝜃𝑑𝜙(𝑛̂ ∙ ∇⃗⃗⃗𝜑)( 𝑟̂ ∙ 𝑛̂)
 

𝜕𝑉
  (3.5.8) 

 

The solution to equation (3.5.8) is [18]: 

 

 φ = −
𝐺𝑀

𝜇𝑒𝑟√1+𝜆𝑒𝑠𝑖𝑛2𝜃
  (3.5.9) 

 

where 𝜇𝑒 = 𝜇(𝑦𝑒) , 𝜆𝑒 = 𝑦𝑒 𝜇𝑒
′ 𝜇𝑒⁄  , 𝜇𝑒

′ = 𝑑𝜇(𝑦𝑒) 𝑑𝑦𝑒⁄   and 𝑦𝑒 = 𝑔𝑒 𝑎0⁄  . 𝜃  is the 

azimuthal angle from the direction of the external field 𝑔𝑒. Equation (3.5.9) is similar 

to 𝜑 = 𝐺𝑀 𝑟⁄  , except that the gravitational constant in Equation (3.5.9) has been 
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modified:𝐺𝑒𝑓𝑓 = 𝐺 𝜇𝑒√1 + 𝜆𝑒𝑠𝑖𝑛2𝜃⁄ . 

 

3.6 Successes of MOND 

 

3.6.1 Galaxy Rotation Curve 

 

The rotation curve of spiral galaxies can be used as an important test for MOND. If 

dark matter is left out, astronomers should be able to use the observable matter to 

predict the rotation curve for galaxies. 

 

The visible matter of galaxy can be categorized into three components: Gas Disk, 

Stellar Disk and Bulge. The rotational velocities provided by these mass distributions 

are: 

 

 𝑉𝑠𝑡𝑎𝑟𝑠
2 (𝑟) =

𝐺𝑀𝑠𝑡𝑎𝑟𝑠(𝑟)

𝑟
 (3.6.1) 

 

where 𝑀𝑠𝑡𝑎𝑟𝑠(𝑟) is the stellar mass within sphere of radius r in the disk of the galaxy, 

and 

 

 𝑉𝑔𝑎𝑠
2 (𝑟) =

𝐺𝑀𝑔𝑎𝑠(𝑟)

𝑟
  (3.6.2) 

 

Note that the gas component may not be exactly in the shape of a disk. Its 3D mass 

distribution may be considered. 

The total velocity derived from visible matter is [19]: 

 

 𝑉𝑁(𝑟) = √|𝑉𝑔𝑎𝑠|𝑉𝑔𝑎𝑠 + Υ𝑠𝑡𝑎𝑟𝑠|𝑉𝑠𝑡𝑎𝑟𝑠|𝑉𝑠𝑡𝑎𝑟𝑠 + Υ𝑏𝑢𝑙|𝑉𝑣𝑢𝑙|𝑉𝑣𝑢𝑙  (3.6.3) 

where Υ𝑠𝑡𝑎𝑟𝑠  and Υ𝑏𝑢𝑙  is the stellar mass-to-light ratios of stellar disk and bulge, 

respectively. 

 

Then incorporating Equation (3.6.3), 𝑎 = 𝑉2 𝑟⁄ , 𝑎𝑁 = 𝑉𝑁
2 𝑟⁄   into Equation (3.2.2) 

gives: 

 

 𝜇 (
𝑉2

𝑟𝑎0
)
𝑉2

𝑟
=

𝑉𝑁
2

𝑟
 （3.6.4） 

 

By applying the simple 𝜇 function, we have: 
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 𝑉 = 𝑉𝑁
√1+√1+4𝑎0𝑟𝑉𝑁

−2

2
 (3.6.5) 

 

By applying Equation (3.4.11), we have: 

 

 𝑉 = 𝑉𝑁 (
1+√1+4(𝑟𝑎0𝑉𝑁

−2)
𝑛

2
)

1 2𝑛⁄

 (3.6.6) 

 

To fit the observed rotational velocity profile, we perform a least squares optimization 

on Equation (3.6.6), treating the mass-to-light ratio as a free parameter that varies 

within a physically reasonable range. 

 

Begeman, Broeills and Sanders performed an analysis in 1991 and discovered that the 

rotational speed calculated in MOND was close to the actual rotational speed observed 

in ten spiral galaxies [20]. In 2012, Benoit Famaey discussed in detail the fitting of 

Monte Carlo simulations into the rotation curves of different types of galaxies, 

including High Surface Brightness (HSB), Low Surface Brightness (LSB), spiral, 

massive and dwarf galaxies [11]. According to Lelli, McGaugh and Schombert, 

MOND succeeded in predicting how 175 galaxies rotate, without any need for 

adjustable parameters at the low-acceleration area [19]. Figure 2.2 shows the result 

from Benoit Famaey. 

 

3.6.2 Tully-Fisher Relation 

 

The Tully-Fisher relation shows that the brightness and rotation velocity of disk 

galaxies are related to one another. It was first introduced in 1977 by R. Brent Tully 

and J. Richard Fisher [21] and is now widely used for measuring distances between 

galaxies as well as in topics related to cosmology. The Tully-Fisher relation is typically 

expressed as: 

 

 𝐿 ∝ 𝑉𝑚𝑎𝑥
𝛼  (3.6.7) 

 

where L is the total luminosity of the galaxy (often measured in infrared or radio 

wavelengths to minimize dust absorption effects), 𝑉𝑚𝑎𝑥 is the maximum rotational 

velocity of the galaxy's rotation curve (usually derived from neutral hydrogen 21 cm 

line or optical spectroscopy), 𝛼 is an exponent, typically ranging between 3 and 4 

(depending on the observational band). 

 

Equation (3.6.7) can be understood in a simple way within the MOND model. The 

speed at which a spiral galaxy rotates majorly depends on its gravity which is 



 

19 

 

influenced by dark matter and ordinary matter. Also, if galaxies have a relatively 

constant mass-to-light ratio (𝑀/𝐿), then their luminosity L increases in proportion to 

how much mass they contain. Newtonian mechanics suggests that rotational velocity 

𝑉𝑚𝑎𝑥 is proportional to the total mass M much like Kepler’s law, where 𝑉 ∝ √𝑀 𝑅⁄ . 

The integrated equations give us equation (3.6.7), in which the value of 𝛼 depends 

on the mass distribution and its mass-to-light ratio. 

 

As illustrated in Figure 2.1, the maximum rotational velocity of a spiral galaxy occurs 

in regions far from its center. According to Modified Newtonian Dynamics (MOND), 

the acceleration of an object at large distances from a mass 𝑀 is given by 

 

𝑎 = √𝑎0𝑎𝑁 

 

For an object in circular motion, the centripetal acceleration is 

 

𝑎 =
𝑉2

𝑅
 

 

Combining these relations, we derive the maximum rotational velocity of a spiral 

galaxy as follows:  

 

 𝑉𝑚𝑎𝑥
4 = 𝐺𝑀𝑎0 (3.6.8) 

 

Hence 

 

 𝑉𝑚𝑎𝑥
4 ∝ 𝑀 (3.6.9) 

 

Then we plug in 𝐿 ∝ 𝑀 with the assumption that the mass-to-light ratio (𝑀/𝐿) of a 

galaxy is relatively constant. 

 𝐿 ∝ 𝑀 ∝ 𝑉4 (3.6.10) 

 

This is the Tully-Fisher relation with 𝛼 = 4. 
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Figure 3.2: MOND rotation curve fits for representative galaxies from the THINGS 

survey [22]. The baryonic mass of selected galaxies varies from 3 × 108𝑀⨀  to 

3 × 1011𝑀⨀. High-resolution interferometric 21 cm observations are available for the 

gaseous components of all galaxies, along with 3.6-micron photometric data to map 

their stellar distributions. Black line is calculated from Newtonian baryonic mass 

model. Blue is fit curve of MOND. The interpolating function used in the fitting curve 

is Equation (3.4.14) with 𝑛 = 1 (figure from [11]). 
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Figure 3.3: The baryonic Tully-Fisher (BTF) relation is analyzed under varying stellar 

mass-to-light ratio assumptions, with each column of panels representing a different 

scaling approach. In the left column, the scalings follow the maximum disk 

prescription (𝛤 = 1, 0.5, 0.25, top to bottom). The middle column applies adjustments 

based on Bell et al. (2003)’s population synthesis models [23] (𝒫 = 2, 1, 0.5, top to 

bottom), while the right column uses mass-to-light ratios from the MDAcc (𝒬 = 2, 1, 

0.5, top to bottom). It should be noted that setting 𝛤, 𝒫, or 𝒬 to zero reproduces the 

gas-only case. To prevent exceeding the maximum disk limit, galaxies that would 

otherwise surpass it under the 𝒫 or 𝒬 scalings are instead plotted at the maximum 

disk value (denoted by open symbols). Half of the sample already reaches this 

constraint by 𝒬 = 2. For consistency, all panels include a dashed line marking the 𝒬 

= 1 fit as a comparative baseline (figure from [24]). 
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CHAPTER 4 

 

PROPOSED EXPERIMENT 

 

The EFE is simplest to check on a two-body system embedded into external field. We 

therefore propose a test with two massive spheres with the axis joining their centers 

aligned either parallel or orthogonal to the external field, see Fig. 4.1. The parameter 

we wish to study for revealing different dynamics is the collision time. Recall that 

under Newton’s laws, it is impossible for any such discrepancy to happen. The reason 

is that, in Newtonian physics, the gravitational field accelerates the entire system and 

both balls the same way without making them move differently relative to one another. 

As a result, both of the collisions are predicted to take the same time. The same is 

predicted by general relativity. Note that uniform external field is removed in the frame 

accelerating downwards with 𝑎 = 𝑔𝑒𝑥. From equivalence between acceleration and 

gravity, the two configurations evolve in exactly the same way. 

 

However, as explained in the last section, in the MOND model we expect to see a 

difference and we wish to work out how small that difference is. 

 

4.1 Internal Gravity  

 

 

Figure 4.1 Schematic of the proposed setup. Two balls are of the same radius and 

density. The arrow in the left represents a uniform gravitational field. The two spheres 

are placed such that their symmetry axis is parallel with or perpendicular to the 

gravitational external field. The effect of external gravity is to pull the two-mass 

system downward. Due to the mutual gravitational attraction of the two balls, they will 

slowly move toward each other and finally collide. 

 

Since, according to Blanchet and Novak, the only change in the internal system is the 

effective Newton’s constant (if the masses are sufficiently far apart), we start with 

computing the Newtonian trajectory for the two spheres.  

(b) Orthogonal configuration (a) Parallel configuration 
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From Energy Conservation Law: 

 

Gm2

L−2x
−
Gm2

L
= mv2               (4.1.1) 

 

 

where x is the displacement of one ball, m is the mass of one ball, L is the initial 

distance between two balls and G is the gravitational constant, see Fig. 4.2. 

Figure 4.2 The displacements of two balls. 

 

Writing 𝑣 =  𝑑𝑥/𝑑𝑡, Equation (4.1.1) can be written as: 

 

 dt =
dx

√
Gm

L−2x
−
Gm

L

                        (4.1.2) 

 

After integrating: 

 

t = √
L

2Gm
(√x(L − 2x) +

L√2 tan−1(
2x

L−2x
)

2
)     (4.1.3) 

 

Equation (4.1.3) shows the relationship between time t and ball displacement x.  

The collision time is found by putting 𝑥 =
𝐿

2
. If we take balls of radius 1cm and mass 

0.0883kg, separated by distance 2.0002 cm, Fig3.3 shows that they will collide at time 

t ≈ 12s, and the maximum speed of the ball is 1.2 nm/s, which is of a very small value. 
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Figure 4.3 Graph of velocity versus time calculated using Newtonian mechanics. Two 

spheres are set to be platinum balls of radius 1cm. The distance between the centers of 

two balls is 2.0002 cm. 

 

4.2 Air Friction 

 

To be more realistic we add air friction to the two balls system. As shown in Fig. 4.3, 

the speeds of two balls are very small throughout the collision process. With the 

consideration of air drag force, the velocities of two balls will only become smaller 

than before. The air friction is written as [25]: 

 

F = 6ηπrv               (4.2.1) 

where 𝜂 is the dynamic viscosity of air, r is the ball radius and v is the relative velocity. 

 

From Newton's second law: 

 

m
dv

dt
= 

Gm2

(L−2x)2
− 6ηπrv            (4.2.2) 

 

However, due to the difficulty of nonlinear ordinary differential equation, we cannot 

obtain an analytical solution. One can still calculate the ball displacement and ball 

velocity at any given time using numerical methods. In this project 4th Order Runge-

Kutta method is chosen to calculate the ball displacement and ball velocity. For the 

detailed code, please refer to the appendix. 
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Figure 4.4 Velocity and Position over time for both internal gravity and air friction 

cases. Two balls are set to be platinum balls of radius 1cm. The distance between the 

centers of two balls is 2.0002 cm. Air viscosity is 1.81 × 10−5 Pa×s. Label “Without 

Air Drag” refers to the internal gravity case. 

 

Fig. 4.4 shows that the motion of two balls under air friction case is almost identical 

to their motion under internal gravity only case. By magnifying the image as shown in 

Fig. 4.5, one can observe that the motion of two balls shows slight differences under 

the two conditions, but they are negligible of gravity to air friction 

 

From the upper panel of Fig. 4.6, one can see that the ratio is greater than two thousand. 

As value of time t becomes smaller and smaller, the ratio increases rapidly. In fact, the 

reason for the author to plot the ratio from t = 2s is to avoid the influence of extremely 

big values from time interval [0s,2s], otherwise the shape of the ratio curve is simply 

“L”. 
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Figure 4.5 Magnified View of Fig. 4.4 around t = 8s. 

 

The reason for the high similarity of motion of two balls under two conditions is 

that internal gravity dominates the collision process of two balls in air friction case. 

Figure 4.6 Ratio of gravity to air friction over time and value of gravity over time for 

air friction case. 

 

4.3 Experimental Conditions 

 

There are two restrictions on the design of proposed experiment: 
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1. The internal acceleration of two balls should be within the MOND regime. 

2. In order to minimize perturbations from the external environment, we limit 

the collision time to ten seconds. 

 

The first constraint reads: 

 

 𝑎 < 𝑎0 = 1.2 × 10−10 m/s2 (4.3.1) 

 

From Newton’s Second Law, (assuming Newtonian mechanics for order of 

magnitude estimation): 

 

 𝑎 =  
Gm

(L−2x)2
 (4.3.2) 

 

The acceleration has to be smaller than 𝑎0 throughout collision process, which means 

the greatest value of 𝑎  is smaller than 𝑎0 . From Equation, one can know that 𝑎 

increases as 𝑥 increases. So, 𝑎(𝜖𝑟) is the maximum value. 

 

Hence 

 

 
Gm

4r2
< 1.2 × 10−10 m/s2 (4.3.3) 

 

Substituting the value of G and writing 𝑚 =  
4

3
𝜋𝑟3𝜌 for a ball: 

 

ρr < 1.7kg/m2                     (4.3.4) 

 

For platinum ball with density 2109 𝑘𝑔/𝑚3, the restriction means that the radius of 

balls must be smaller than 0.8mm. Note that gravity from a mm-scale object has 

already been detected in the lab [26]. 

 

Here is the corresponding radius table for some material with densities around 

100kg/m3 

Material Density (kg/m3) Radius (cm) 

Expanded Polystyrene (EPS) 20~50 3.4~8.5 

Balsa Wood 160 1 

Metal Foam 50~200 0.85~3.4 

Silica Aerogel 100 1.7 

Table 4.1: Maximum radius for balls made of various materials. 

The second constraint means: 

𝑡 = √
𝐿

2𝐺𝑚
(√𝑥(𝐿 − 2𝑥) +

𝐿√2 tan−1(
2𝑥

𝐿−2𝑥
)

2
)    <   10𝑠        (4.3.5) 
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 Figure 4.7 Notations used to simplify implications of 10 seconds measurement time. 

The black bar situated in the middle of two balls represents the position where two 

balls collide. The dashed line is the distance from the edge of one ball to the collision 

point, denoted as 𝜖𝑟—the distance is expressed as the ball's radius multiplied by a 

proportionality factor. 

 

First, we substitute 𝑚 =  
4

3
𝜋𝑟3𝜌 for a ball and 𝐿 =  (2 + 2𝜖)𝑟 into Equation (4.3.5), 

see Fig. 4.7 for the notation. 

Then, expand 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 around 𝑥 =  0: 

 

tan−1 𝑥 =   𝑥 −
1

3
𝑥3 +

1

5
𝑥5 −⋯+ (−1)𝑛

𝑥2𝑛+1

2𝑛 + 1
+⋯ 

 

 Equation (4.3.5) becomes: 

 

𝑡 =  √
3+3𝜖

2𝐺𝜋𝜌
(√𝜖 + 𝜖 + 𝜖2)                  (4.3.6) 

 

From equation (4.3.6), one can see that the collision time is independent of the radius 

of the ball. For a given platinum ball, its density is constant, and the collision time 

depends solely on 𝜖, meaning that the collision time is only related to the distance 

between the surfaces of two balls. 

 

As shown in Fig. 4.8, to keep the collision time of two balls around 10 seconds, 𝜖 has 

to be less than 3 × 10−4.  We already know that due to the limitation of acceleration, 

the radius of platinum balls must be less than 0.8 mm. So, the distance between 

surfaces of two platinum balls, denoted as 2𝜖𝑟, must be less than 480 nm. This is rather 

demanding and means that surface effects have to be carefully considered.   
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Material 
Density(kg/

m3) 
Radius(cm) 𝜖(1e-7) 

Distance between 

edges of two 

balls(nm) 

Expanded 

Polystyrene (EPS) 
20~50 3.4~8.5 2.8~7 23.8 

Balsa Wood 160 1.0625 22.3 23.7 

Metal Foam 50~200 0.85~3.4 7~28 23.8 

Silica Aerogel 100 1.7 14 23.8 

Table 4.2: Values of 𝜖 and the associated distance between the surface of two-body 

system for the investigated materials. 

 

While this study does not systematically examine the correlation between surface 

distance between two balls and material density, the results presented in Table 4.2 

reveal that the distance shows no density dependence when the initial acceleration and 

collision time are fixed. 

 

Everything discussed above regarding experimental conditions falls under the case of 

Newtonian mechanics. However, as we discussed in the “Air Friction” section, the 

motion of two balls in the air friction scenario is almost identical to the motion in the 

internal gravity scenario. So, all the restrictions derived above also apply to the case 

of air friction. 

 Figure 4.8 Collision time versus ϵ for platinum ball. 

 

4.4 Rotating Polar Coordinate System 

 

The motion of two balls will be observed and recorded by a lab on Earth, which means 
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in a rotating reference frame.  

 

For simplicity, we keep the motion of the two balls in two dimensions, i.e. they are 

placed on the equator at the beginning, and one is on top of the other (parallel 

configuration, see Fig. 4.1(b)). 

 

The Lagrangian of two-ball system in 3D Cartesian coordinate system is: 

 

L =
1

2
mv1

2 +
1

2
mv2

2 +
Gm2

r
                    (4.4.1) 

 

where r is the distance between centers of two balls. In the rotating reference frame, 

the Coriolis force, which is always perpendicular to the direction of motion of the 

object, will transform the motion of two balls from one-dimensional to two-

dimensional. So, the distance between centers of two balls cannot be simply written as 

𝐿 − 2𝑥. 

Figure 4.9 Notation used for rotating coordinate system 

The velocity v and distance r in Equation (4.4.1) need to be transformed from the 3D 

Cartesian coordinate system into the rotating Cartesian coordinate system. The 

velocity of two balls in a rotating coordinate system is [26]: 

 

v⃗⃗ =  (Ẋ − θ̇Y)î′ + (Ẏ + θ̇X)ĵ′               (4.4.2) 

 

where X)and Y)are coordinates in the rotating coordinate system, and 𝜃̇ is the angular 

velocity of the rotating coordinate system, see Fig. 4.9. In our experiment, it is the 

angular velocity of earth rotation, denoted as 𝜔. Equation (4.4.2) gives the velocity of 

an object as observed from the rotating coordinate system, which rotates around its 

own origin. However, in a real-life scenario, the object actually rotates around the 

center of the Earth. Therefore, the rotation of the origin should be incorporated into 

Equation (4.4.2). 
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This results in the modified Equation (4.4.2): 

 

v⃗⃗ =  (Ẋ − θ̇Y − 𝑎)î′ + (Ẏ + θ̇X)ĵ′             (4.4.3) 

 

Letter 𝑎 represents the contribution of the rotation of the origin. The angular velocity 

is considered constant because the collision time between the two balls is expected to 

be around 10 seconds. The Earth's rotation period is one day which is 86,400 seconds. 

Ten seconds is a relatively small-time interval when compared to that number, meaning 

the angle by which the Earth rotates in 10 seconds is negligible. Thus, the change in 

the direction of the translational velocity of the rotating origin is negligible. Over 10 

seconds, the change in the angular velocity of Earth's rotation is also negligible. 

Therefore, the translational velocity of the rotating origin, 𝑣𝑡 =  𝜔𝑟, can be treated as 

a constant in our discussion, which is denoted by a, where r is the distance between 

the observer and the center of the Earth.  

 

The distance between center of two balls as interpreted in rotating coordinate system 

is simply written as: 

r =  √(X1 − X2)2 + (Y1 − Y2)2                  (4.4.4) 

where 𝑋1 and 𝑌1 are the coordinates of one ball in the rotating coordinate system, 𝑋2 

and 𝑌2 are the coordinate of another ball in the rotating coordinate system. 

 

Substituting Equation (4.4.4) and Equation (4.4.3) into Equation (4.4.1): 

 

 

 

L =   
1

2
m(Ẋ1

2 + Ẏ1
2) +

1

2
mω2(X1

2 + Y1
2) + mω(Ẏ1X1 − Ẋ1Y1) − maẊ1 +maωY1 

+2a2 +
1

2
m(Ẋ2

2 + Ẏ2
2) +

1

2
mω2(X2

2 + Y2
2) + mω(Ẏ2X2 − Ẋ2Y2) − maẊ2 + maωY2 

+
Gm2

√(X1 − X2)2 + (Y1 − Y2)2
 

 

Then transform the coordinates from Cartesian coordinates into polar coordinates: 

 

{
X1 = r1 cosφ1 ,   Y1 = r1 sinφ1 
X2 = r2 cosφ2 ,   Y2 = r2 sinφ2

 

 

Where 𝑟1 and 𝜑1 are the coordinates of one ball in polar coordinate system, 𝑟2 and 

𝜑2 are the coordinates of another ball in polar coordinate system. 

 

Hence the Lagrangian for two balls system in rotating polar coordinate system is: 
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L =
1

2
m(ṙ1

2 + r1
2φ̇1

2) +
1

2
mω2r1

2 +mωr1
2φ̇1 +mar1(ω − φ̇1) sinφ1 

−maṙ1 cosφ1 +
1

2
m(ṙ2

2 + r2
2φ̇2

2) +
1

2
mω2r2

2 +mωr2
2φ̇2 +mar2(ω − φ̇2) sinφ2 

−maṙ2 cosφ2 +
Gm2

√r1
2 + r2

2 − 2r1r2 cos(φ1 − φ2)
 

 

By writing 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑟̇1
=

𝜕𝐿

𝜕𝑟1
  , 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑟̇2
=

𝜕𝐿

𝜕𝑟2
  , 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜑̇1
=

𝜕𝐿

𝜕𝜑1
  , 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜑̇2
=

𝜕𝐿

𝜕𝜑2
  , we 

shall get the equation of motion for two balls in rotating polar coordinate system. But 

there are eight variables in the above four equations, which is 𝑟̇1 𝑟̇2 𝜑̇1 𝜑̇2 and 𝑟̈1 𝑟̈2 

𝜑̈1 𝜑̈2. So there is no analytical solution, but the system can be simulated numerically. 

 

4.5 Rough Trajectory and Collision Time 

 

When observing the motion of an object in a rotating reference frame, a fictitious force 

called the Coriolis force is introduced [26]: 

 𝐹𝑐 = −2𝑚𝝎× 𝒗 (4.5.1) 

where 𝝎 is the angular velocity of the rotating frame, 𝒗 is the velocity of the object. 

The Coriolis force is always perpendicular to the velocity of the object, hence causing 

its trajectory to curve. 

 

Because the gravitational attraction between the two small spheres is mutual, 

 𝐹 = 𝐺
𝑀𝑚

(𝐿−2𝑥)2
 (4.5.2) 

The values of the accelerations and velocities of the two balls are the same. Hence, the 

two balls will collide at the midpoint of the initial positions of the two balls. 

 

Therefore, an observer in the rotating reference frame would see the two balls orbiting 

around their midpoint while gradually approaching each other—spiral motion, see Fig. 

4.10. 

Figure 4.10 Schematic diagram of spiral motion 
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The ratio of radial velocity to angular velocity is an important parameter in spiral 

motion. It describes how curved the trajectory is. For simplicity, we plot the trajectories 

of spiral motions with constant radial, angular velocities and different ratio parameter 

k. 

Figure 4.11 Trajectories of spiral motions with different ratios. 

We can see in Fig. 4.11 that the ratio of radial velocity to angular velocity is crucial. 

In our proposed setup, the initial radial and angular velocities of the two balls are 

zero. So, 𝑘 = 𝑣𝑟𝑎𝑑𝑖𝑎𝑙 𝜔⁄ =
𝑎𝑟𝑎𝑑𝑖𝑎𝑙

𝑎𝑎𝑛𝑔𝑢𝑙𝑎𝑟
= 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝑓𝑜𝑟𝑐𝑒⁄ . We need to find 

out the ratio of internal gravity to Coriolis force, see Fig 4.12. 

 

Figure 4.12 Ratio of internal gravity to Coriolis force 

Reading from Fig 4.12, we know that the ratio is always greater 1 × 107, we can 

then plot the trajectory of spiral motion with 𝑘 = 1 × 107, see figure below. 
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Figure 4.13 Trajectory of spiral motion with 𝑘 = 1 × 107 

 

The ratio of internal gravity to Coriolis force is extremely high—the effect of 

Coriolis force is negligible. It can also be found in Fig. 4.13 that the trajectory is 

visually flat. Therefore, although we observe the motion of the two small balls in a 

rotating reference frame, i.e. Earth, their trajectories should still be such that they 

collide directly with each other without any rotation around the midpoint. 

 

Since we introduced EFE, the quantity we are interested in is the collision time, 

especially the difference of collision time between two different setups, see Fig. 4.1. 

For the setup that the axis joining centers of two balls is orthogonal to the external 

field, two balls will experience mutual gravitational attraction toward each other and 

external field that pulls the whole two-body system downward. In the setup that the 

axis joining centers of two balls parallels the external field, the small ball at the lower 

position will experience an upward mutual gravitational attraction and a downward 

external gravitational force, while the small ball at the upper position will experience 

a downward mutual attractive force and a downward external gravitational force—the 

EFE needs to be taken into account. Hence the dynamics of the two-body system is 

different in two setups. 

The collision time has already been given in section 4.3 equation (4.3.5) and (4.3.6): 

𝑡 = √
𝐿

2𝐺𝑚
(√𝑥(𝐿 − 2𝑥) +

𝐿√2 tan−1 (
2𝑥

𝐿 − 2𝑥)

2
) 

𝑡 =  √
3 + 3𝜖

2𝐺𝜋𝜌
(√𝜖 + 𝜖 + 𝜖2) 

Since the EFE can be quantified as the modification to the gravitational constant 𝐺. 

To calculate the collision time in parallel setup, we need to substitute a modified 

gravitational constant 𝐺𝑒𝑓𝑓: 

𝑡𝑒𝑓𝑓 = √
3 + 3𝜖

2𝐺𝑒𝑓𝑓𝜋𝜌
(√𝜖 + 𝜖 + 𝜖2) = (√𝜇𝑒√1 + 𝜆𝑒𝑠𝑖𝑛2𝜃) 𝑡 
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Hence  

∆𝑡 = (1 − √𝜇𝑒√1 + 𝜆𝑒𝑠𝑖𝑛2𝜃) 𝑡 

where 𝜃 = 𝜋 2 ⁄ , 𝑔𝑒 = 9.8𝑚 𝑠2⁄ , 𝜇𝑒 = 𝜇(𝑦𝑒) , 𝜆𝑒 = 𝑦𝑒 𝜇𝑒
′ 𝜇𝑒⁄  , 𝜇𝑒

′ = 𝑑𝜇(𝑦𝑒) 𝑑𝑦𝑒⁄  

and 𝑦𝑒 = 𝑔𝑒 𝑎0⁄ . Let the interpolating function be the simple μ function: μ(𝑥) =

𝑥 1 + 𝑥⁄ . 

 

Assume the collision time 𝑡 = 10𝑠. Then 

 

∆𝑡 = 3.061106923496482 × 10−12 × 10𝑠 = 3.061106923496482 × 10−11𝑠 

 

The collision time difference between two setups is 30𝑝𝑠. In our setup, although 

the external field is Earth's gravitational field 𝑔, which is much larger than 𝑎0, 

we still expect an external field effect to emerge, even if this effect is extremely 

weak. 

 

To observe this tiny difference is too challenging. To increase the time difference, 

we need to either increase to collision time or use a weaker external field such 

that the value of √𝜇𝑒√1 + 𝜆𝑒𝑠𝑖𝑛2𝜃 is smaller. 
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CHAPTER 5 

 

CONCLUSION 

 

This work tries to find ways to experimentally verify the External Field Effect (EFE) 

that Modified Newtonian Dynamics (MOND) introduces, MOND is an alternative  

model, explaining some dark matter phenomenology. With a streamlined two-body 

approach, the study determines the necessary physical and theoretical conditions 

needed to observe EFE in a lab. Using analysis and computer simulations, including 

Runge-Kutta method, the system of two identical masses moving under each other’s 

gravitational pull was studied. The findings give numerical estimates of the predicted 

motion and list the conditions needed to stay in the MOND regime. 

 

Two major constraints emerged from the analysis: the internal acceleration must 

remain below the MOND critical acceleration scale, and the experimental timescale 

should be small to avoid environmental disturbance. These restrictions translate into 

strict requirements on material density, object size, and initial separation. For example, 

platinum spheres must have radii less than 0.8 mm, and edge separations must be on 

the order of hundreds of nanometers, to ensure that the system remains in the MOND 

regime for the duration of the collision process. 

 

Future work may expand on this foundation by refining the experimental setup. 

Enhancing time resolution through high-precision sensors are essential next steps. 

Simulations of exact trajectories of the two-body system under horizontal and vertical 

alignment is also important. 
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APPENDIX 

 

Code for Figure 3.4 Velocity and Position over time for both internal gravity and air 

friction cases 

clc; clear; 

% 参数设置 

G = 6.67430e-11;   % 引力常数 (m^3 kg^-1 s^-2) 

r = 0.01;           % 小球半径 (m) 

epsi = 1e-4; 

dp = 2.109e4;       % 铂密度 = 2.109e4 (kg/m^3) 

m = (4/3)*pi*(r^3)*dp;  % 小球质量 (kg) 

L = (2 + 2*epsi)*r;    % 两球间初始距离 (m) 

eta = 1.81e-5;      % 空气粘度 (Pa.s) 

 

% 初始条件 

x0 = 0;             % 初始位置 (m) 

v0 = 0;             % 初始速度 (m/s) 

 

% 时间设置 

t0 = 0;             % 初始时间 (s) 

t_end = 1000;       % 结束时间 (s) 

h = 0.001;          % 时间步长 (s) 

N = floor((t_end - t0) / h); % 步数 

 

% 初始化 

t = t0; 

Y_drag = [x0; v0];       % 状态向量 [x; v] 

Y_no_drag = [x0; v0];       % 状态向量 [x; v] 

 

% 用于记录结果 

results_drag = zeros(N+1, 3);   % 考虑空气阻力的结果 

results_no_drag = zeros(N+1, 3);% 不考虑空气阻力的结果 

results_drag(1, :) = [t, x0, v0]; 

results_no_drag(1, :) = [t, x0, v0]; 

 

% 四阶 Runge-Kutta法实现（考虑空气阻力和不考虑空气阻力的两种情况） 

for n = 1:N 

    k1_drag = h * derivatives(t, Y_drag, L, r, m, eta, true);  % 考虑空气阻力 

    k2_drag = h * derivatives(t + h/2, Y_drag + k1_drag/2, L, r, m, eta, true); 

    k3_drag = h * derivatives(t + h/2, Y_drag + k2_drag/2, L, r, m, eta, true); 

    k4_drag = h * derivatives(t + h, Y_drag + k3_drag, L, r, m, eta, true); 

     

    k1_no_drag = h * derivatives(t, Y_no_drag, L, r, m, eta, false);  % 不考虑

空气阻力 
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    k2_no_drag = h * derivatives(t + h/2, Y_no_drag + k1_no_drag/2, L, r, m, 

eta, false); 

    k3_no_drag = h * derivatives(t + h/2, Y_no_drag + k2_no_drag/2, L, r, m, 

eta, false); 

    k4_no_drag = h * derivatives(t + h, Y_no_drag + k3_no_drag, L, r, m, eta, 

false); 

     

    % 更新状态向量 

    Y_drag = Y_drag + (1/6) * (k1_drag + 2*k2_drag + 2*k3_drag + k4_drag);  % 

考虑空气阻力 

    Y_no_drag = Y_no_drag + (1/6) * (k1_no_drag + 2*k2_no_drag + 2*k3_no_drag 

+ k4_no_drag);  % 不考虑空气阻力 

     

    t = t + h; % 更新时间 

     

    % 记录结果 

    results_drag(n + 1, :) = [t, Y_drag(1), Y_drag(2)]; 

    results_no_drag(n + 1, :) = [t, Y_no_drag(1), Y_no_drag(2)]; 

 

    % 检查位置，如果 x 大于 L/2，停止计算 

    if abs(Y_drag(1)) > L/2 - r 

        results_drag = results_drag(1:n+1, :); % 保留有效结果 

        results_no_drag = results_no_drag(1:n+1, :); % 保留有效结果 

        break; % 退出循环 

    end 

end 

 

% 绘图 

figure; 

subplot(2, 1, 1); 

plot(results_drag(:, 1), results_drag(:, 2), 'b-', 'LineWidth', 1.5);  % 计算

考虑空气阻力的情况，蓝色线 

hold on; 

plot(results_no_drag(:, 1), results_no_drag(:, 2), 'r--', 'LineWidth', 1.5);  % 

计算不考虑空气阻力的情况，红色线 

xlabel('Time (s)', 'FontSize', 14); 

ylabel('Displacement (m)', 'FontSize', 14); 

title('Displacement of the Ball Over Time', 'FontSize', 14); 

legend({'With Air Drag', 'Without Air Drag'}, 'FontSize', 12); 

grid on; 

 

subplot(2, 1, 2); 

plot(results_drag(:, 1), results_drag(:, 3), 'b-', 'LineWidth', 1.5);  % 速度

图，考虑空气阻力的情况，蓝色线 
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hold on; 

plot(results_no_drag(:, 1), results_no_drag(:, 3), 'r--', 'LineWidth', 1.5);  % 

速度图，不考虑空气阻力的情况，红色线 

xlabel('Time (s)', 'FontSize', 14); 

ylabel('Velocity (m/s)', 'FontSize', 14); 

title('Velocity of the Ball Over Time', 'FontSize', 14); 

legend({'With Air Drag', 'Without Air Drag'}, 'FontSize', 12); 

grid on; 

 

% 导数函数 

function dYdt = derivatives(t, Y, L, r, m, eta, include_drag) 

    G = 6.67430e-11;   % 引力常数 (m^3 kg^-1 s^-2) 

     

    x = Y(1);           % 位置 

    v = Y(2);           % 速度 

     

    % 计算引力 

    gravity = G * m / (L - 2*x)^2; 

     

    % 根据是否考虑空气阻力，计算加速度 

    if include_drag 

        drag = 6 * pi * eta * r * v / m; 

        dvdt = gravity - drag;   % 空气阻力影响 

    else 

        dvdt = gravity;  % 不考虑空气阻力 

    end 

     

    dYdt = [v; dvdt];  % 返回速度和加速度 

 

    % 调试输出 

    % disp(['Gravity: ', num2str(gravity), ', Drag: ', num2str(drag)]); 

end 

 

 


