Research

We focus our research on the following topics

Topics

 
  • Mediated dynamics and its applications
  • Correlations between physical systems
  • Foundations of quantum physics and gravity
  • Quantum computation and information
  • Life in magnetic field
 

Mediated dynamics and its applications

Mediators are ubiquitous in nature. Think of photons between objects and eyes or spacetime between galaxies... We focus at present on quantum formulation of the simplest case of mediated dynamics, the scenario we call A - C - B. This means that objects A and B do not interact directly, but solely via mediator C. We have shown here the general conditions under which C allows development of quantum entanglement between A and B. This led us to methods for revealing quantumness of inaccessible objects that were applied to optomechanics and open-system dynamics here, to quantum biology here, to condensed matter here, and to reveal quantumness of gravity here.
Now we work on upgrading these methods so that they provide quantitative estimates of quantum properties.  

Correlations between physical systems

Quantum systems can be correlated in ways inaccessible to classical objects. We work on various forms of quantum correlations and fair comparison between them, see here for review. For example, we gave here a new formulation of such a basic concept as quantum entanglement. It turns out that a pure state is entangled if and only if suitable correlations measured along random local settings exceed certain bound. This has practical applications: since the measurements are random, entanglement can be detected in absence of any reference frames. We also work on exotic phenomena in multipartite systems. See here for entanglement without correlations and here for entangling labs that have never ever exchanged any entangled particles.
Now we work on defining and quantifying genuinely multipartite classical and quantum correlations.  

Foundations of quantum physics and gravity

What are physical origins of the mathematical structure of quantum mechanics? What if a massive object is put in a quantum superposition? See here for a subtle version of an intuitively clear fact that information gain between distant labs is bounded by the communicated information. Taking this as a principle disqualifies theories with forms of correlations stronger than maximum allowed in the quantum formalism. But note here for examples where entanglement gain is higher than the communicated entanglement and identification of the relevant resource for the increment of entanglement. In collaboration with Matt Lake and others we have recently put forward here an effective model which recovers many features of quantum gravity phenomenology with only a tiny modification of the canonical commutation relation.
Now we work on gravity-mediated entanglement and protocols confirming presence / absence of mediators.  

Quantum computation and information

Quantum phenomena such as coherence and entanglement are well known resources behind efficient quantum information processing. We have shown here that generically quantum advantage is already present for unentangled states as long as they possess other forms of quantum correlations and there is a restriction on the amount of randomness one can use in the solution. More recently, together with the group of Tim Liew, we focus on practical schemes for quantum problem solving that combine non-linear quantum systems with techniques from artificial intelligence. See here for an example of a protocol to measure in one go non-linear properties of a quantum state, e.g. entanglement and entropy.
Now we work on quantum reservoir processing.  

Life in magnetic field

Magnetic field of the Earth is around for about 3.5 billion years. Only very simple organisms were present before its emergence. Practically all evolution happened in the presence of magnetic field and it is reasonable to suspect that life is somewhat adapted to it. Indeed plethora of organisms, raging from magnetotactic bacteria to higher vertebrates, were shown to react to external magnetic field. However, in most cases we do not understand the sensing mechanism. Since magnetic particles were identified in the tissues of many animals, naturally one expects that they may play a role. In collaboration with Rainer Dumke we have measured here American cockroaches in order to study their magnetisation dynamics in vivo. In short, the data suggests other ways of magnetic sense than based on rotating magnetic deposits. See here for a typical alternative and here for theory of chemical reactions with quantum coherence that perhaps plays a role in sensing.
Now we work in collaboration with Rainer and Al Franco-Obregon on cellular response to pulsed magnetic fields.

Papers


PDF L. Knips, J. Dziewior, W. Kłobus, W. Laskowski, T. Paterek, P. J. Shadbolt, H. Weinfurter, J. D. A. Meinecke Multipartite entanglement analysis from random correlations, arXiv preprint: 1910.10732.
PDF Kelvin, K. Onggadinata, M. J. Lake, T. Paterek, Dark energy effects in the Schrödinger-Newton approach, arXiv preprint: 1910.01308.
PDF S. Pal, P. Batra, T. Paterek, T. S. Mahesh, Experimental localisation of quantum entanglement through monitored classical mediator, arXiv preprint: 1909.11030.
PDF W. Y. Kon, T. Krisnanda, P. Sengupta, T. Paterek, Non-classicality of spin structures in condensed matter: An analysis of Sr14Cu24O41, arXiv preprint: 1907.06027.
PDF T. Krisnanda, G. Y. Tham, M. Paternostro, T. Paterek, Observable quantum entanglement due to gravity, arXiv preprint: 1906.08808.
PDF M. J. Lake, M. Miller, R. Ganardi, Z. Liu, S.-D. Liang, T. Paterek, Generalised uncertainty from geometric superpositions, Class. Quant. Grav. 36 15 (2019).
PDF S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, T. C. H. Liew, Quantum reservoir processing, npj Quantum Inf. 5, 35 (2019).
PDF M. Zuppardo, R. Ganardi, M. Miller, S. Bandyopadhyay, T. Paterek, Entanglement gain via measurements with unknown results, Phys. Rev. A 99, 042319 (2019).
PDF W. Kłobus, W. Laskowski, T. Paterek, M. Wieśniak, H. Weinfurter, Higher dimensional entanglement without correlations, Eur. Phys. J. D 73, 29 (2019). [Topical issue on Quantum Correlations]
PDF T. Krisnanda, C. Marletto, V. Vedral, M. Paternostro, T. Paterek, Probing quantum features of photosynthetic organisms, npj Quantum Inf. 4, 60 (2018).
PDF M. C. Tran, R. Ramanathan, M. McKague, D. Kaszlikowski, T. Paterek, Bell monogamy relations in arbitrary qubit networks, Phys. Rev. A 98, 052325 (2018).
PDF T. Krisnanda, R. Ganardi, S.-Y. Lee, J. Kim, T. Paterek, Detecting non-decomposability of time evolution via extreme gain of correlations, Phys. Rev. A 98, 052321 (2018).
PDF Z. Zhao, S. Mondal, M. Markiewicz, A. Rutkowski, B. Dakić W. Laskowski, T. Paterek, Paradoxical consequences of multipath coherence: Perfect interaction-free measurements, Phys. Rev. A 98, 022108 (2018).
PDF L.-J. Kong, H. Crepaz, A. Górecka, A. Urbanek, R. Dumke, T. Paterek, In-vivo biomagnetic characterisation of the American cockroach, Sci. Rep. 8, 5140 (2018). [Covered by MIT Technology Review, D-News, India Times, The Register, Physics World and many others after the Ig Nobel prize]
PDF T. Krisnanda, M. Zuppardo, M. Paternostro, T. Paterek, Revealing non-classicality of inaccessible objects, Phys. Rev. Lett. 119, 120402 (2017).
PDF A. Chia, T. Paterek, L. C. Kwek, Hitting statistics from quantum jumps, Quantum 1, 19 (2017).
PDF M. C. Tran, M. Zuppardo, A. de Rosier, L. Knips, W. Laskowski, T. Paterek, H. Weinfurter, Genuine N-partite entanglement without N-partite correlation functions, Phys. Rev. A 95, 062331 (2017). [Editors' suggestion]
PDF M. Grassl, D. McNulty, L. Mista Jr, T. Paterek, Small sets of complementary observables, Phys. Rev. A 95, 012118 (2017). [Editors' suggestion]
PDF T. Le, F. A. Pollock, T. Paterek, M. Paternostro, K. Modi, Divisible quantum dynamics satisfies temporal Tsirelson's bound, J. Phys. A 50, 055302 (2017).
PDF M. C. Tran, B. Dakić, W. Laskowski, T. Paterek, Correlations between outcomes of random measurements, Phys. Rev. A 94, 032408 (2016).
PDF A. Chia, A. Górecka, P. Kurzyński, T. Paterek, D. Kaszlikowski, Coherent chemical kinetics as quantum walks II: Radical pair reactions in Arabidopsis thaliana., Phys. Rev. E 93, 032408 (2016).
PDF A. Chia, K. C. Tan, Ł. Pawela, P. Kurzyński, T. Paterek, D. Kaszlikowski, Coherent chemical kinetics as quantum walks I: Reaction operators for radical pairs., Phys. Rev. E 93, 032407 (2016).
PDF M. Zuppardo, T. Krisnanda, T.Paterek, S. Bandyopadhyay, A. Banerjee, P. Deb, S. Halder, K. Modi, M. Paternostro, Excessive distribution of quantum entanglement, Phys. Rev. A 93, 012305 (2016).
PDF M. C. Tran, B. Dakić, F. Arnault, W. Laskowski, T. Paterek, Quantum entanglement from random measurements, Phys. Rev. A 92, 050301R (2015).
PDF S. Brierley, A. Kosowski, M. Markiewicz, T. Paterek, A. Przysiężna, Nonclassicality of temporal correlations, Phys. Rev. Lett. 115, 120404 (2015). [Covered by G. Musser in Quanta magazine]
PDF C. Schwemmer, L. Knips, M. C. Tran, A. de Rosier, W. Laskowski, T. Paterek, H. Weinfurter, Genuine multipartite entanglement without multipartite correlations, Phys. Rev. Lett. 114, 180501 (2015).
PDF M. C. Tran, W. Laskowski, T. Paterek, The Werner gap in the presence of simple coloured noise, J. Phys. A 47, 424025 (2014). [Special issue 50 years of Bell's theorem]
PDF T. K. Chuan, T. Paterek, Separable states improve protocols with finite randomness, New J. Phys. 16, 093063 (2014).
PDF M. Markiewicz, A. Przysiężna, S. Brierley, T. Paterek, Genuinely multi-point temporal quantum correlations and universal measurement-based quantum computing, Phys. Rev. A 89, 062319 (2014).
PDF M. Markiewicz, P. Kurzyński, J. Thompson, S.-Y. Lee, A. Soeda, T. Paterek, D. Kaszlikowski, Unified approach to contextuality, non-locality, and temporal correlations, Phys. Rev. A 89, 042109 (2014).
PDF B. Dakić, T. Paterek, Č. Brukner, Density cubes and higher-order interference theories, New J. Phys. 16, 023028 (2014).
PDF A. Fedrizzi, M. Zuppardo, G. G. Gillett, M. A. Broome, M. de Almeida, M. Paternostro, A. G. White, T. Paterek, Experimental distribution of entanglement with separable carriers, Phys. Rev. Lett. 111, 230504 (2013). [Editors' suggestion] [Viewpoint by C. Silberhorn in Physics] [Covered on 2physics.com]
PDF W. Laskowski, C. Schwemmer, D. Richart, L. Knips, T. Paterek, H. Weinfurter, Optimised state-independent entanglement detection based on a geometrical threshold criterion, Phys. Rev. A 88, 022327 (2013).
PDF W. Laskowski, M. Markiewicz, T. Paterek, R. Weinar, Entanglement witnesses with variable number of local measurements, Phys. Rev. A 88, 022304 (2013).
PDF J. N. Bandyopadhyay, T. Paterek, D. Kaszlikowski, Reply to comment on quantum coherence and sensitivity of avian magnetoreception, Phys. Rev. Lett. 110, 178901 (2013).
PDF M. Markiewicz, W. Laskowski, T. Paterek, M. Żukowski, Detecting genuine multipartite entanglement of pure states with bipartite correlations, Phys. Rev. A 87, 034301 (2013)
PDF K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures, Rev. Mod. Phys. 84, 1655 (2012)
PDF J. N. Bandyopadhyay, T. Paterek, D. Kaszlikowski, Quantum coherence and sensitivity of avian magnetoreception, Phys. Rev. Lett. 109, 110502 (2012). [Covered on Physics World]
PDF W. Laskowski, M. Markiewicz, T. Paterek, M. Wieśniak, Incompatible local hidden-variable models of quantum correlations, Phys. Rev. A 86, 032105 (2012).
PDF T. K. Chuan, J. Maillard, K. Modi, T. Paterek, M. Paternostro, M. Piani, Quantum discord bounds the amount of distributed entanglement, Phys. Rev. Lett. 109, 070501 (2012).
PDF B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, P. Walther, Quantum discord as resource for remote state preparation, Nature Phys. 8, 666 (2012). [News & Views by A. Datta in Nature Photonics 6, 724 (2012)]
PDF W. Laskowski, D. Richart, C. Schwemmer, T. Paterek, H. Weinfurter, Experimental Schmidt decomposition and state independent entanglement detection, Phys. Rev. Lett. 108, 240501 (2012).
PDF W. Laskowski, M. Markiewicz, T. Paterek, M. Żukowski, Correlation-tensor criteria for genuine multiqubit entanglement, Phys. Rev. A 84, 062305 (2011).
PDF S.-Y. Lee, T. Paterek, H. S. Park, H. Nha, Linear optical scheme for producing polarization-entangled NOON states, Opt. Comm. 285, 307 (2011).
PDF R. Ramanathan, T. Paterek, A. Kay, P. Kurzyński, D. Kaszlikowski, Local realism of macroscopic correlations, Phys. Rev. Lett. 107, 060405 (2011).
PDF M. Wieśniak, T. Paterek, A. Zeilinger, Entanglement in mutually unbiased bases, New J. Phys. 13, 053047 (2011).
PDF A. Fedrizzi, B. Škerlak, T. Paterek, M. P. de Almeida, A. G. White, Experimental information complementarity of two-qubit states, New J. Phys. 13, 053038 (2011).
PDF P. Kurzyński, T. Paterek, R. Ramanathan, W. Laskowski, D. Kaszlikowski, Correlation complementarity yields Bell monogamy relations, Phys. Rev. Lett. 106, 180402 (2011).
PDF T. Paterek, P. Kurzyński, D. Oi, D. Kaszlikowski, Reference frames for Bell inequality violation in the presence of superselection rules, New J. Phys. 13, 043027 (2011).
PDF T. Paterek, B. Dakić, Č. Brukner, Reply to comment on mutually unbiased bases, orthogonal Latin squares, and hidden-variable models, Phys. Rev. A 83, 036102 (2011).
PDF T. Paterek, M. Pawłowski, M. Grassl, Č. Brukner, On the connection between mutually unbiased bases and orthogonal Latin squares, Phys. Scr. T140, 014031 (2010). [Proceedings of CEWQO 2009]
PDF M. Pawłowski, J. Kofler, T. Paterek, M. Seevinck, Č. Brukner, Nonlocal setting and outcome information for violation of Bell's inequality, New J. Phys. 12, 083051 (2010).
PDF T. Paterek, B. Dakić, Č. Brukner, Theories of systems with limited information content, New J. Phys. 12, 053037 (2010).
PDF W. Laskowski, T. Paterek, Č. Brukner, M. Żukowski, Entanglement and communication-reducing properties of noisy N-qubit states, Phys. Rev. A. 81, 042101 (2010).
PDF K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Unified view of quantum and classical correlations, Phys. Rev. Lett. 104, 080501 (2010).
PDF T. Paterek, J. Kofler, R. Prevedel, P. Klimek, M. Aspelmeyer, A Zeilinger, Č. Brukner, Logical independence and quantum randomness, New J. Phys. 12, 013019 (2010). [Editors' selection][Highlighted in Europhysics News 41, 10 (2010)][Chosen among New Journal of Physics Best of 2010]
PDF M. Pawłowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, M. Żukowski, Information causality as a physical principle, Nature 461, 1101 (2009).
PDF P. Badziąg, Č. Brukner, W. Laskowski, T. Paterek, M. Żukowski, Experimentally accessible geometrical separability criteria, Phys. Scr. T135, 014002 (2009).
PDF T. Paterek, B. Dakić, Č. Brukner, Mutually unbiased bases, orthogonal Latin squares, and hidden-variable models, Phys. Rev. A 79, 012109 (2009).
PDF B. Dakić, M. Šuvakov, T. Paterek, Č. Brukner, Efficient hidden-variable simulation of measurements in quantum experiments, Phys. Rev. Lett. 101, 190402 (2008). [Editors' suggestion]
PDF P. Badziąg, Č. Brukner, W. Laskowski, T. Paterek, M. Żukowski, Experimentally friendly geometrical criteria for entanglement, Phys. Rev. Lett. 100, 140403 (2008).
PDF T. Paterek, A. Fedrizzi, S. Gröblacher, T. Jennewein, M. Żukowski, M. Aspelmeyer, A. Zeilinger, Experimental test of non-local realistic theories without the rotational symmetry assumption, Phys. Rev. Lett. 99, 210406 (2007).
PDF T. Paterek, Measurements on composite qudits, Phys. Lett. A 367, 57 (2007).
PDF S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmeyer, A. Zeilinger, An experimental test of non-local realism, Nature 446, 871 (2007). Corrigendum: Nature 449, 252 (2007). [News & Views by A. Aspect in Nature 446, 866 (2007)] [Cover story of New Scientist and Seed Magazine]
PDF K. Nagata, W. Laskowski, T. Paterek, Bell inequality with an arbitrary number of settings and its applications, Phys. Rev. A 74, 62109 (2006).
PDF J. Kofler, T. Paterek, Č. Brukner, Experimenter's freedom in Bell's theorem and quantum cryptography, Phys. Rev. A. 73, 22104 (2006).
PDF T. Paterek, W. Laskowski, M. Żukowski, On series of multiqubit Bell's inequalities, Mod. Phys. Lett. A. 21, 111 (2006).
PDF W. Laskowski, T. Paterek, M. Żukowski, Č. Brukner, Tight multipartite Bell's inequalities involving many measurement settings, Phys. Rev. Lett. 93, 200401 (2004).
PDF T. Paterek, Comment on "On the role of locality condition in Bell's theorem", Int. J. Quant. Inf. 2, 419 (2004).
PDF Č. Brukner, T. Paterek, M. Żukowski, Quantum communication complexity protocols based on higher-dimensional entangled systems, Int. J. Quant. Inf. 1, 519 (2003).

Grants


2020-2023 Polish National Agency for Academic Exchange: Polish Returns 2018
2018-2020 National Science Centre grant Beethoven (Poland): Quantum correlations - from few to many particles
2017-2018 Ministry of Education Tier 1 Grant (Singapore): Towards experimental tests of gravitationally-induced decoherence in a dark energy universe
2016-2019 Ministry of Education Tier 2 Grant (Singapore): New correlation quantifiers and their experimental implications
2015-2018 National Science Centre grant Harmonia (Poland): New fundamental bounds on correlations of a strictly quantum nature. Various definitions of quantumness and their mutual relations
2014-2016 Ministry of Education Tier 1 Grant (Singapore): Towards quantum biology with insects: magneto-sensitivity of the American cockroach
2014-2016 Ministry of Education Tier 1 Grant (Singapore): Quantum entanglement in space and in time
2013-2017 National Science Centre grant Sonata Bis (Poland): Nonclassical correlations and their structure in multilevel systems: New sources and method of analysis
2012-2016 Start-up grant of Nanyang Technological University (Singapore): Quantum correlations